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Welcome message

On behalf of the SWIM’19 organizing committee, I am honored and delighted to welcome you to
the 12" Summer Workshop on Interval methods, Palaiseau, France. This year SWIM is hosted by
ENSTA Paris. ENSTA Paris belongs to the foremost graduate schools of engineering in France.
It is a public educational and research establishment, self-governed under the supervision of the
Ministry of Defence. Organizing committee wish to thank the school for the event hosting and
the help in the organization.

Few words about our history: ENSTA ParisTech was originaly the brainchild of Henry-
Louis Duhamel du Monceau, inspector general of the Navy. He had identified the need to give
the Navy’s master carpenters a theoretical education, particularly in mathematics and physics,
which were making quick progress, so that they would have a clearer understanding of their
trade. After founding the first school in Toulon, he transferred it to Paris in 1741. This date is
recognised as the origin of our institution. After undergoing 7 lean years of under-funding, he
managed to persuade the duc de Choiseul to reopen it in 1765, and continued to run the school
for the rest of his life. At the time, the institute, called School of Engineer-Constructors of
Royal Vessels, was housed in the Louvre Palace. Later on, it became known as ”Ecole nationale
supérieure du Génie Maritime” (National Higher College of Maritime Engineering).

SWIM 2019: Our technical program is rich and varied with 25 contribution papers (each
one reviewed by two people) and two round tables. The success of this edition depends on you,
the participants, so thank you for your contribution !

This volume contains the Book of abstracts of The 12" Summer Workshop on Interval
Methods SWIM 2019. The tradition of SWIM workshops was set up in France in 2008, and since
that time it is held annually by the effort of Luc Jaulin and Nacim Ramdani. The workshop joins
people from different communities working with interval methods. Thus, it provides a unique
opportunity to meet scientists from robotics, optimization, control, estimation, verification and
other areas.

J. Alexandre dit Sandretto, Workshop Chair
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The MPFI library revisited

11 Evgeniya Vorontsova
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15 L. Benet, M. Forets, D. P. Sanders, and C. Schilling
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Efficient computation of the set of stabilizing controllers for an LTI System using
intervals

35 J. Kersten, A. Rauh , H. Aschemann
Analyzing Uncertain Dynamical Systems After State-Space Transformations Into Co-
operative Forms
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45 T. Gatto, L. Meyer, H. Piet-Lahanier
A Polytopic Box Particle Filter for state estimation of Non Linear Discrete-Time
Systems

Computation and methods
49 M. Lange
Rigorous bounds for ill-posed linear programming problems

53 0. Mullier, J. Alexandre dit Sandretto
Computation of integrals with interval endpoints

Fault detection and calibration
55 S. Liu, J.-J. Gehrt, D. Abel, and R. Zweigel
Identification of Multi-Faults in GNSS Signals using RSIVIA under Dual Constellation

59 H. Dbouk, S. Schon
Interval based Fault Detection and Exclusion for GNSS

63 R. Voges, B. Wagner
Extrinsic Calibration Between a 3D Laser Scanner and a Camera Under Interval
Uncertainty

Differential Equations IT

67 A. Rauh, J. Kersten
Toward the Development of Iteration Procedures for the Interval-Based Simulation
of Fractional-Order Systems
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Localization
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Set Inversion Via Interval Analysis: A Study on Parallel

Processing Implementation*'

K. A. Nasiotis’?, D. Lépez?, S. P. Adam', and L. G. Casado?

'Dept. of Informatics and Telecommunications, University of Ioannina, Greece
2Supercomputing Group, University of Almeria (CeiA3), Spain

Keywords: Interval analysis; Set member-
ship techniques; Parallel branch-and-bound

Introduction

Among the success stories of interval compu-
tation [5] one may report the application of
interval based global optimization, validation
of numerical calculations, the use of intervals
for modeling uncertainty and dealing with un-
certain systems, etc.

This work focuses on Set Inversion Via In-
terval Analysis (SIVIA) [4] a method used for
solving problems such as nonlinear parameter,
state or error estimation for systems operat-
ing under bounded uncertainty. The method
is primarily a set membership technique de-
signed to solve such estimation problems pro-
vided that system operation is described by
some analytic function f : X C R" - Y C
R™ for which some suitable interval extension
[f] : IR™ — IR™ can be defined. Then, given
an interval vector, i.e. a box, [y] C Y, one
needs to determine the set of unknown vectors
x € X such that f(z) € [y]. SIVIA starts with
an initial box [Xp] such that X C [Xo] C IR"
and computes an approximation of the set of
interest S = {z € X C R"|f(z) € [y]} =
f~Y(Jy]) N X as a union of axes aligned boxes.

Computation explores the search space [X(]
applying a branch-and-bound, or more pre-
cisely, given the type of processing, a branch-
and-prune (B&P) strategy whose performance
depends on the size of the problem i.e. the size

*This paper has been supported by the Spanish
Ministry (RT12018-095993-B-100), in part financed by
the European Regional Development Fund (ERDF).

"Konstantinos A. Nasiotis placement in (CeiA3) is
financed by the ERASMUS+ Program.

of the search space [Xj|, its dimension, the
function f itself, the distribution of the vec-
tors of interest z € [Xy] and the “resolution”
adopted for the approximation of the set S.
SIVIA has been successfully applied in con-
trol systems problems with few parameters.
For problems with higher dimensions, larger
sized input space and fine “resolution” the per-
formance of SIVIA deteriorates severely and
becomes practically inapplicable. Hence, the
need to investigate the possibility of a par-
allel implementation towards obtaining some
affordable computational cost.

Background and Related Work

Interval computations have proven to be ex-
tremely important to a number of problems
for which errors produced by calculations or
due to uncertainty that can be modeled in
However, Kreinovich [6]
provides a number of convincing arguments
that interval computations are NP-hard and
the only way to deal with NP-hardness is to
use parallel versions of the algorithms, when
this is feasible.

SIVIA itself relies on interval computations
and it is also known to suffer from the curse
of dimensionality which is inherent to its B&P
processing style. A recent example of this ar-
gument is reported by the work of Adam et
al. [1] who formulated the problem of esti-
mating generalization of a multilayer percep-
tron as a parameter estimation problem and
used SIVIA for exploring search spaces such
as [—1,1]'1%. The sequential implementation
of SIVIA in such experiments gave extremely
interesting results but at the same time it
proved the practical impossibility of SIVIA

terms of intervals.
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to cope with higher dimensions. This defi-
ciency led to the definition of the so-called
contractor programming in order to diminish
the size of the boxes explored by SIVIA [3],
while some practitioners tried to effectively
parallelize SIVIA [7, §].

As reported in [8], Marvel et al. used SIVIA
for estimating model parameters in biological
systems, under bounded conditions of uncer-
tainty. They adopted a parallel implementa-
tion using multiple processing cores and they
developed a method for use on a single multi-
core workstation using POSIX threads to pro-
cess subsets of the parameter space while ac-
cess to shared information was controlled by
mutex-locked linked lists. The results ob-
tained for two biological models, namely, the
nonlinear Lotka-Volterra predator-prey model
and the SEIR infectious disease model, using
8 threads on an 8-core machine, seem to be
satisfactory but it remains unclear what the
speedup will be when scaling up the imple-
mentation to 16, 32 or more more CPUs.

Another work that merits to be cited here
is the effort of Le Ménec [7] for computing,
in real time, the viability kernel as a tool for
decision making in autonomous systems. To
this end he applied an interval based algo-
rithm based on SIVIA for computing the vi-
ability kernel of the underlying nonlinear sys-
tem. The author proposes a parallel imple-
mentation of SIVIA on a multi-core process-
ing system while making use of the contractors
concept. The parallel implementation scheme
adopted in this work, |7], uses a pool of jobs
each one corresponding to the evaluation of a
hyper-box. A host streams the jobs to a multi-
core system assigning a job to each available
core while recovering the results of each com-
pleted job. This implementation is a possible
way to deal with the inherent deficiency of the
IBEX library to share objects between threads
i.e. being thread unsafe. Moreover, the author
does not present any performance results and
so it is not possible to objectively criticize this
work.

In the work presented, herein, we adopt

a more elaborated parallelization strategy
which uses an Asyncronous Multiple Pool of
boxes and a dynamic load balancing scheme
based on workload estimation for optimizing
the use of the computing resources.

Proposed Parallel Version

Parallelization of B&B style algorithms were
widely studied in the literature, see [2| and
references therein. In order to simplify the
algorithm let us focus on SIVIA when m=1.
So, we are dealing with determining the “level
set” of the function f in the (one dimen-
sional) interval [y]. Then, for f(z) = 2% + 23,
ly] = [1,2], [Xo] = [-1.5,1.5] and € = 0.05
the result of the inversion operation is given
in Figure 1. In this specific implementation

Figure 1: Circle level set in [1,2] interval. Red:
in , yellow: border, green: out.

of SIVIA the selected box is divided by the
widest dimension and Depth-First is used to
select next box.

Our parallel implementation is based on a
Asynchronous Multiple Pool of boxes using
a dynamic number of threads [2| in C-XSC
which was suitably modified to be thread safe.
Dynamic load balancing is provided by gener-
ating a new thread, if the current number of
threads is smaller than a threshold, and by
moving the next selected box (the smallest
one) to the new thread. Initial experiments
run on a node of Bullion S8 with 8 Intel(R)
Xeon(TM) E7 8860v3 @ 2.20GHz (16 cores)
and 2.3TB of total RAM. The results, in num-
ber of boxes, for the circle problem, shown in
Figure 1 for ¢ = 1076 are: |L;,|=13,501,140,
| Lvorder|—40,503,776 and |Loy|— 13,501,276
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and the total number of evaluated boxes is
94,508,607. Lin, Loyt and Lporder are the lists
of the boxes that are inside, outside or on the
e-border of the set discovered by SIVIA.

We also tested the parallel algorithm for the
Griewank function using the same hardware,
[;,]:[1.5,3]é [XO]Q:[—I(Q), 10]2 and =107,

Ti cos(ﬂ) +1

; 4000 zl_[1 Vi
The results obtained are: |L;,|—122,424,640,
| Lborder|=343,639,512 and |L,|=122,445,084
and the total number of evaluated boxes is
833,378,959. The speedup results for the
above experiments are displayed in Figure 2,
hereafter.

==—Linear
= Circle

e Griewank

Speed-up
PN WA OO N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Threads

Figure 2: Speedup achieved by the current im-
plementation for the two examples

The number of evaluated boxes increases
not only with n but with the type of the prob-
lem, as well. The achieved, close to linear,
speedup is due to a the dynamic load balanc-
ing used, which is based on the estimation of
the workload of the boxes pending for evalu-
ation. This allows to select half of the pend-
ing workload in order to migrate those boxes
to a new thread. Additionally, a Cut-off of
the parallelism is used in order to avoid mi-
gration of boxes without significant workload
(subtree). We expect this strategy to further
improve both the parallel version and the se-
quential one, as the number of evaluated boxes
will be reduced.

Conclusion

Despite its efficiency for small-sized estima-
tion problems SIVIA is NP-hard and fails to

address problems of larger size in reasonable
time. The aim of this study is to investigate
an efficient parallel implementation of SIVIA
on multi-core systems. The results obtained,
so far, support the prospect of acceptable pro-
cessing times while underlining the need of fo-
cusing on techniques accelerating the parallel
version shown here. Scaling up the current im-
plementation to systems with a larger number
of cores is of primary concern for this study.
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The MPFT library revisited

Nathalie Revol*!

University of Lyon - Inria, France

Keywords: MPFI Library; Arbitrary Pre-
cision Interval Arithmetic; IEEE 1788-2015
Compliance

The IEEE 1788-2015 standard

Interval arithmetic has been defined and used
since the 50s and 60s. However, no common
definition existed for years and it made diffi-
cult to compare different works. In 2008, a
group of interval experts, gathered at a sem-
inar in Dagstuhl, felt that interval arithmetic
was mature enough to undergo a standardiza-
tion effort. This effort led to the IEEE 1788-
2015 standard [2].

It was impossible to define a theory that
encompasses the co-existing theories in use,
such as set theory, Kaucher arithmetic, modal
arithmetic, cset arithmetic. The adopted so-
lution was to provide "hooks" to accomodate
different theories within the standard: each
provided theory is called a flavor. The only
flavor defined in the 2015 version of the stan-

dard is the set-based flavor, from set theory.

Another peculiarity of the IEEE 1788-2015
standard is the handling of exceptions, called
decorations. A decoration is attached to each
interval and gives a summary of what hap-
pened during the computations that resulted
in this interval: was every operation defined
and continuous over its arguments, or sim-
ply defined, or even less, such as in /[—2,1]
where the square root is not defined every-
where over its argument [—2,1]7 Incidentally,
in the set-based flavor, /[—2, 1] is computed

as \/[—2, 1] N Dom = /[0,1] = [0,1].

*Corresponding author.

Libraries compliant with the
IEEE 1788-2015 standard

The development of the standard has been ac-
companied by the development of the C++
libieeel1788 library by M. Nehmeier, that
served as a proof-of-concept. Unfortunately,
M. Nehmeier left academia and this library is
no more maintained. Two other libraries have
been developed since then and are compliant
with the standard: JInterval by D. Nadezhin
and S. Zhilin, and the Octave interval pack-
age by O. Heimlich. The JInterval re-
cently and untimely lost its main developer,
D. Nadezhin. O. Heimlich also left academia
but he still develops and maintains the Octave
interval package.

No other library of interval arithmetic has
been developed in compliance with the IEEE
1788-2015 standard, because it is difficult. A
first difficulty is the implementation of the
long list of functions and conversions man-
dated by the standard, with the prescribed ac-
curacy. Another difficulty is the implementa-
tion of the decoration mechanism. On the one
hand, it requires that an extra piece of infor-
mation is attached to each interval, and this
can destroy memory optimizations (padding
etc.). On the other hand, decorations must
be propagated and this implies some more ex-
tra code. These difficulties are less salient for
the MPFT library, introduced below.

The MPFI library

MPFT [3] is a C library for arbitrary precision
interval arithmetic. An interval is represented
by its endpoints, which are arbitrary preci-
sion floating-point numbers provided by the
MPFR library [1]. Every single operation is
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as accurate as possible, thanks to the MPFI
library that provides correctly rounded oper-
ations, with directed roundings as needed, for
each endpoint.

MPFR already offers a long list of functions
and conversions between different types and
MPFR floating-point numbers: incorporating
them in MPFI is usually relatively easy, for
most of them, as the bulk of the work has al-
ready been done by MPFR, developers. How-
ever, some functions mandated by the stan-
dard, and in particular most of the reverse
functions, useful for constraints solving, are
still missing in MPFI.

As an interval is represented by two arbi-
trary, and thus variable, precision endpoints,
adding a decoration to each interval is not an
issue: padding or cache optimization are not
at stake anyway, as the employed memory is
already (usually) variable and large.

Finally, the mechanism for handling ex-
ceptions in MPFT is very different from the
one adopted in the IEEE 1788-2015 standard:
for instance, for \/[—2, 1], MPFI returns NaI,
which stands for Not an Interval. The code
of each MPFI operation must be reworked to
handle and propagate decorations.

To sum up, there is some work to be done
to make MPFI compliant with the IEEE 1788-
2015 standard, but this work seems less de-
manding than for libraries based on fixed-
precision floating-point numbers such as IEEE
754-2008 binary32 or binary64. The rela-
tive overhead, both in terms of memory and
of computation time, due to the incorporation
of flavors and decorations, is also less impor-
tant and probably negligible.

Work to be done

The main modifications will take place at two
levels. The first one concerns the data struc-
ture of a MPFI interval.

a) An extra field will be added to indicate
the flavor in use. This is a bit different
(but not incompatible) from the intended

use of a flavor, which is supposed to be set
for a whole block of code rather than for
an individual interval. However, MPFI
will check that the flavors of the operands
and of the result match before performing
the required operation.

b) An extra field, parameterized by the fla-
vor, will be added to store the decoration
attached to the interval.

The second kind of modifications concerns
the code for each operation.

a) A preprocessing will be added to check
the compatibility of the flavors and to
branch to the code corresponding to the
flavor in use.

b) For each branch, a postprocessing will
propagate the decoration.

Lastly, for backward compatibility, a
MPFIoriginal flavor will be added, that will
branch to the original version of MPFI. It will
be the default flavor, so that users can run
their existing codes without any modification
of their behaviour.
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Introduction

The general-purpose Julia programming lan-
guage [5] was designed for speed, efficiency,
and high performance. It is a flexible,
optionally-typed, and dynamic computing
language for scientific, numerical and tech-
nical computing applications. Julia is open
source language with all sources free avail-
able on GitHub. The language was developed
and incubated at MIT [6]. Currently, after
Julia 1.0 was officially released to the pub-
lic in August 2018, the language is becoming
increasingly popular. Julia has been down-
loaded more than 8.4 million times, as of May
2019 [2], and is used at more than 1,500 uni-
versities.

So, it is very important for researchers,
working in a field of interval analysis, to have
fast, efficient and robust publicly available
software packages for performing computa-
tions with interval arithmetic written in Julia.

IntervalArithmetic.jl

In this paper, we review and compare a re-
cently developed Julia package for perform-
ing Validated Numerics, i.e. rigorous com-
putations with finite-precision floating-point
arithmetic, Interval Arithmetic.jl [4], with per-
formance of GNU Octave interval package for
real-valued interval arithmetic [1]. This Oc-
tave toolbox was chosen for comparison be-
cause of several important reasons. First of
all, it is a free, open-source software, unlike

11

INTLAB [9], a Matlab/Octave toolbox for Re-
liable Computing. The other fundamental dif-
ference between INTLAB and GNU Octave
interval package is non-conformance of INT-
LAB to IEEE 1788-2015 — IEEE Standard
for Interval Arithmetic [3]. On the other hand
GNU Octave interval package’s main goal is
to be compliant with the Standard. Likewise,
authors of IntervalArithmetic.jl wrote [4] that
they were working towards having the pack-
age be conforming with the Standard. So, all
calculations in these packages are performed
using interval arithmetic: all quantities are
treated as intervals. The final result is also
an interval contained the correct answer.

In next section we would like to show some
practical examples with interval arithmetic in
Julia.

Examples

Getting Started

The basic object in the IntervalArithmetic.jl
package is the parameterized type Interval.
By default, Interval objects contain Float64
s. Intervals are created using the @interval
macro:

using IntervalArithmetic

a = Qinterval(l, 2)
b = Q@interval (3, 4)
print(a + b, a - b, a *x b, a / b)

The output of this code is

(4, 6]
[0.25,

[-3, -1]
0.666667]

[3, 8]

As you may have noticed, the package permits
to write quite clear and intuitive code for in-
terval computations.
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Matrix Multiplication

In this section we present the results of exper-
iments comparing the Interval Arithmetic.jl li-
brary with the GNU Octave interval package.
In summary, we show that Julia interval li-
brary is significantly faster than the Octave
library.

In our first experiment we measured the
time to evaluate the interval matrix multipli-
cation. The Julia code is:

function MultMatr (A, B)
return A%*B

end

n = 10

M1 = 10*rand(n, n)

M2 = 10*rand(n, n)

iM1 = map(Interval, M1)

iM2 = map(Interval, M2)

A = iM1 .£ 5

B = iM2 .+ 5

@benchmark MultMatr (A,B)

Here we use BenchmarkTools package by Jar-
rett Revels [8], a framework for writing and
running groups of benchmarks.

And Octave code for MultMatr function is:

pkg load interval
function [t] = MultMatr (mn)
A = infsupdec(rand(n),
10*xrand(n) + 1);
B = infsupdec (rand(n),
10*rand (n) + 1);

tic

C = AxB,;

t = toc;
end

Table 1: Time for interval matrix multiplica-

tions
Matrix size, | Julia, | Octave,
rows ms ms
10 0.095 13.317
100 111.91 849.61
1000 125870 863340

For Octave we create 10 random interval

matrix pairs and calculate the mean experi-
mental time over all multiplications. The re-
sults of the first setting are summarized in
Table 1. This experiment shows that perfor-
mance of Julia interval package for that prob-
lem is significantly better.

Elementary functions

In our second experiment we compared the
times for evaluation of the elementary func-
tions (exp, sin, cos, etc.) for random interval
arguments. The design of the experiment is
taken from [7].

Table 2: Time for 10° evaluations of the ele-
mentary functions

Function | Julia, s | Octave, s
exp 0.49 102.7
sin 0.749 147.85
cos 0.638 230.2
tan 0.49 126.13

arcsin 0.858 119.01
arccos 1.132 169.02
arctan 1.318 127.01

The results of the second setting are sum-
marized in Table 2. We may see that these
calculations in Julia are almost two orders of
magnitude faster.

Plotting

In this section, we will illustrate how to vi-
sualize the interval extension of a given func-
tion over an interval. The process of splitting
the interval into many smaller adjacent pieces
for range evaluations of the given function is
called mincing.

Figures 1- 2 show visualization of minc-
ing process for one function (Julia code was
adapted from [10]). For implementation The
IntervalBox type constructed from an array
of Interval was used.

12
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Figure 1: Function cos(z) + 0.5sin(2z),
10 sub-intervals.

.

Figure 2: Function cos(z) + 0.5sin(2z),
50 sub-intervals.
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Conclusion

Public available Julia package for interval
arithmetic has been investigated. Experimen-
tal comparison of Octave and Julia packages
for interval arithmetic shows that Julia Inter-
valArithmetic.jl package is significantly faster
then Octave interval package. In addition, the
implementation process of interval arithmetic
computations in this Julia package is easy and
convenient, due to intuitive syntax of the lan-
guage and the package.
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Taylor models, introduced by Berz and
Makino (3, 6, 7], define a tool that allows to
rigorously bound functions or compute vali-
dated solutions of ODEs, among other appli-
cations. A Taylor model M (f) = (pn,A) of
an (n+ 1)-continuously differentiable function
f(z), » € D C R? (defined over an open set
containing the domain D of interest), is de-
fined by the n-th order Taylor approximation
pn(z) of f(x) around the point xy € D, and an
interval [A], such that f(x) € pp(z) + [A] for
all x € D. In its original form, the coefficients
of p(x) are floating-point numbers.

This definition was recently extended by
M. Joldes [5], where Taylor models with ab-
solute remainder are defined as above (using
interval coefficients for the Taylor polynomial
as well as the expansion point), and Taylor
models with relative remainder are defined by
f(x) € [pn](z) + [A]z"T! for all x € D.

Here we present TaylorModels.jl [1], a
package written in Julia for the rigorous ap-
proximation of functions in one and several
variables. The package implements both Tay-
lor models with absolute remainder for one
and several variables and Taylor models with
relative remainder for univariate functions.
The polynomial coefficients may be floating-
point numbers or intervals, and allow to per-

*Corresponding author.
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Figure 1: Examples of rigorous bounds for
flz)=2(x—1.1)(z+2)(x+2.2)(x+2.5)(z+
3)sin(1.72+0.5) in D = {z |- 0.5 <z < 1.0}
using (a) absolute-remainder Taylor models of
order 6 and 7, and (b) relative-remainder Tay-
lor models of order 5 and 6.

form computations using extended precision
formats. Figure 1 displays an example from
Ref. 6] of a univariate function bounded by
Taylor models with absolute or relative re-
We shall describe examples of its
use as well as its application to obtain vali-
dated solutions of ODEs. This work is built
on other packages developed by us for interval
arithmetic [8], Taylor series [2|, and set-based

mainder.
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reachability [4].
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Introduction

Hybrid systems are commonly defined as dy-
namical systems mixing discrete and continu-
ous times. They are widely present in control
command systems where a continuous physi-
cal process is controlled by software compo-
nents which run at discrete instants. One
of the verification techniques is to simulate
the global system. In such a simulation pro-
cess, the continuous physical process is mod-
eled as differential equations whose solutions
are approximated by dedicated integration al-
gorithms. The discrete processing is the soft-
ware components. Both parts of the system
have to interact, allowing the discrete process
to react to events of the continuous one.

Simulations can be very dependent on the
initial conditions of the system. Small varia-
tions may have important impacts. Moreover,
the initial conditions may not always be accu-
rately known. A solution to address these un-
certainties is to compute using intervals, hence
to rely on interval-based guaranteed integra-
tion tools |2, 6].

Tools and Domain Specific Languages ex-
ist to ease the modeling, development and
verification of hybrid systems (MODELICA,
SIMULINK /STATEFLOW, LABVIEW, Zélus
and others [4]). These languages provide nu-
merous advantages compared to a manual im-
plementation requiring to explicitly bind the
code of the software components with the run-
time/library of simulation. They often pro-

*Corresponding author.
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pose high-level constructs (automata, differ-
ential equations, guards) with dedicated static
verifications (typechecking, initialization anal-
ysis, scheduling, causality analysis) and com-
pile the hybrid model to low-level code (C,
C++) to produce an executable simulation.

This work proposes to bind the flexibility
of a hybrid programming language, Zélus|3|,
with the safety of interval-based guaranteed
integration using Dynlbex|1, 5|. Zélus natively
generates imperative OCaml code linked with
a point-wise simulation runtime. Dynlbex is a
plug-in of the C++ Ibex library, bringing var-
ious validated numerical integration methods
to solve Initial Value Problems (IVPs). We
do not address the compilation of arbitrary
Zélus programs toward Dynlbex. We present
the compilation scheme for an I'VP described
in a subset of Zélus to a C++ simulation code
using Dynlbex.

1 IVPs in Zélus

An IVP in Dynlbex is represented by a vector-
valued ordinary differential equation (ODE)
with initial conditions whereas an VP in Zélus
is represented by a system of coupled equa-
tions. Compilation from Zélus to Dynlbex
therefore requires a transformation between
these representations.

The model of a simple harmonic oscilla-
tor with dampening described by the equa-
tion & + kot + kyx = 0 with initial values
2(0) = 1, ©(0) = 0 can be written in Zélus
as :
let hybrid shm decay (x0, x’0, k1, k2) = x

where rec der x = x’ init x0

and der x’ = —.k1l =*. k2 *. x’
x’0

X —. init
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x where

let hybrid main () =
1.0, 0.0, 4.0,

x = shm_decay ( 0.4)

where der x represents & and der x’ is
Z. The node main instantiates the node

shm_decay with specific initial values and &k
and ks.

2 Compiling the IVP

Compiling the Zélus code requires two steps.
First the hierarchy of nodes must be flattened,
harvesting all the differential equations. Dur-
ing this process, each node instantiation ex-
pression is replaced by the body of the node
where the occurrences of its parameters are
replaced by the effective expressions provided
at the instantiation point. This implies a re-
cursive inlining mechanism which terminates
since Zélus forbids recursive nodes.

Once the intermediate representation of the
flattened system is obtained, the multiple
equations have to be aggregated into a unique
vector-valued function to finally generate the
C++ code. Each differential equation cor-
responds to one dimension of the Dynlbex
Function data structure. Initial conditions
are also transformed in a vector-valued struc-
ture. During this process, Zélus expressions
are compiled to C++ expressions. Since nodes
are flattened, leading to a list of equations,
this process mostly consists of a translation of
arithmetic expressions into C++, mapping the
identifiers to the appropriate vector compo-
nent, and converting real constants into trivial
intervals.

We extended the Zélus compiler to imple-
ment the described compilation process. This
new backend operates on the intermediate rep-
resentation obtained after type, causality and
initialization analyses and does not interfere
with the standard compilation. The code gen-
erated for the example given at the beginning
of this section is shown in the following listing.
#define TO (0.000000)

#define TEND (6.000000)

int main () {
const int dim = 2;

Variable y(dim);
IntervalVector yinit (dim);
Function ydot =

Function

(v,
Return

(y[1],
((-Interval (4.000000)) =
(Interval (0.400000) * y|
)
yinit [0] = Interval(1.000000);
yinit [1] = Interval (0.000000);
ivp_ode problem = ivp ode(ydot,TO0, yinit)

y[o]) -
1))

simulation simu =
simulation (&problem ,TEND,GL4,1e-7) ;
simu.run_ simulation () ;
simu . export yO0("export");
return 0;

In this generated code, the size of the IVP
is 2 since we had 2 equations. The interval
y stores the continuous state of the system.
The vector yinit contains the initial values.
Each equation is translated into an argument
of the Return constructor. We can see that
the compilation mapped the x’ of the Zélus
program to the dimension 1 of the vector-
based representation, and x to the dimension
0. It is possible to recognize, in the Return
clause, the translation of -.k1 *. k2
*. x’ where k1 has been properly instanti-
ated by 4.0 and k2 by 0.4.

X -.

3 Experimental Results

The first experiment was to simulate the sys-
tem with Zélus and with our generated code,
then to compare the results. In the figure 1,
the Zélus native simulation is represented by
the red line and the simulation obtained using
the intervals is shown by the green boxes.
Both simulations behave consistently. In
particular, the results obtained with the stan-
dard integration runtime of Zélus always re-
main inside the boxes obtained using the in-
terval mechanism. This suggests that the na-
tive integration runtime of Zélus is precise
enough in this example to avoid inaccuracies
that could be caused by float rounding errors.
Although there is not yet syntax extension
of Zélus in the current implementation to spec-

18
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Figure 1: Simulations with/without intervals

ify interval values, it is possible to add un-
certainty on the initial value of der x, by
manually changing the value of yinit[0] to
Interval(0.9, 1.0) in the generated C4++
code. The simulation obtained after this
change is shown in the figure 2.

1

T
Zelus + Dynlbex
Zelus

-1

Figure 2: Simulation with initial uncertainty

Both simulations continue to behave consis-
tently, and we see more clearly how the uncer-
tainty increases with time.

4 Conclusion

We presented a mechanism to compile I'VPs
described in Zélus to C++ code using Dynlbex.
This allows the simulation of programs writ-
ten in a high-level programming language with
interval-based validated numerical integration
methods. This work has lead to a real imple-
mentation in the Zélus compiler. Extensions

19

to handle more complex IVPs and to com-
pile contracts verification on programs are in
progress.
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Introduction

We turn the rigorous but theoretical approach
to computing with continuous data [8| into
practice, complementing classical numerical
and analytic methods for solving broad classes
of initial-value and boundary-value problems
(IVP and BVP) for partial differential equa-
tions (PDEs). The FEzact Real Computation
paradigm! allows to conveniently implement
imperative algorithms involving real numbers,
converging sequences, and smooth functions
without the hassles of Turing machines. This
approach differs from traditional Reliable Nu-
merics in considering real numbers as exact
entities (as opposed to intervals [5]) while
guaranteeing output approximations up to er-
ror 1/2™ (as opposed to intermediate precision
propagation), where n is the output error pa-
rameter. We develop a turnkey solver, includ-
ing careful calculations of internal parameters
(such as spatial grid and time step size) and
in agreement with complexity predictions [4],
in dependence on n. This is the starting point
towards actual implementation.

Difference Schemes in Exact

Real Computation

Consider IVP and BVP for systems of PDEs
of the form

*Corresponding author.
!See arXiv:1608.05787v4
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w = Lu+ f(t,x) € CP(Q,R"),
u |i—o= ¢(x) € C4Q,R"),
(Lu |saxjom=¥(y)) -

(1)

Here 02 is the boundary of the compact set
QCc R ze Qye dxI[0T], L =
> An(z, u)%. For a boundary-value prob-
|| <s

lem (the Cauchy problem being stated with-
out the last condition in the parentheses of
(1)), L is a linear operator.

Suppose the given IVP and BVP be well
posed in that the classical solution @ : [0; 1] X
Q — R (i) exists, (ii) is unique, and (iii) de-
pends continuously on ¢. More precisely we
assume that u(t,z) € C? and its C*-norm is
bounded linearly by C?-norms of the data as
[lu||c2 < eull@l|lc2 (in functional spaces guar-
anteeing all the required properties). More-
over suppose that the given IVP and BVP ad-
mit a (iv) stable (with stability coefficient cg)
and (v) approximating with at least the first
order of accuracy (and approximation coeffi-
cient capp) explicit difference scheme [2].

Then taking any (binary-rational) uniform
space grid step h such that

h < 1/(ca- IDZoll - (1 + est - capp) - 27)

and (binary-rational) time step 7 meeting the
Courant inequatlity 7 < vh, we can apply
the standard (explicit) difference scheme iter-
ations, treating all coefficients as exact reals.
In this way we get an approximation to the
solution with the precision 1/2".

The coefficients ¢y, cst and c,pp Were explic-
itly expressed in [6] via (derivatives of) ¢ and
Ao = A}, = const for a particular difference
scheme for symmetric hyperbolic systems.
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For the case when A,(z,u) = A,(z) and
f(t,x) = 0 it is possible to improve the bit
cost of thus obtained algorithm by applying
efficient matrix powering instead of step-by-
step iterations [4].

Analytic PDEs in Exact Real
Computation

For IVP with analytic A,, f and ¢ in (1) we
can rigorously compute solutions using ana-
lytic series, treating their coefficients as exact
reals and applying iterations of [1], §4.6.3.

In the linear case Ay = An(x), f =0, it is
more efficient to use the exponentiation series
u(t, z) = exp(tL)p(x) = Yt /K1 - LK o(x)
and recursive operator powering, as suggested
in [4]. More precisely, the n-th term of this
power series gives approximation of the solu-
tion with precision 1/2", provided that condi-
tions of Theorem 8 of [4] hold.

Conclusion

For analytic PDEs we develop the series tech-
nique in addition to the possible application
of difference schemes, because, as proved in
[4] for the linear case (Theorem 3), it yields
PTIME complexity bounds provided the in-
put is PTIME computable. For the difference
scheme approach the best complexity bound
which we were so far able to establish for the
linear case and PTIME inputs, was PSPACE
(for particular examples #P#7), i.e. much
“worse” than PTIME.

Note also that finding the solution to the
2-dimensional Poisson equation was proved in
[3] to be optimally in # P while solutions to
Navier-Stokes equations were proved in [7] to
be computable, but the proofs do not provide
explicit algorithms.
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Introduction

A Lie group [4] is both an abstract and a
smooth n-dimensional manifold so that multi-
plication and the inverse are both smooth. Lie
groups have been introduced to model the con-
tinuous symmetries of differential equations.
They are widely used for their resolution. The
main idea of the new approach presented in
this paper is to take advantage of the symme-
tries of the problem to extend one solution to
get all other solutions.

Our main contribution is to show that
the use of Lie symmetries can be combined
with interval based methods to propagate un-
certainties through differential equations [1].
More precisely, we will compute an enclosure
of the solution to a differential equation as-
suming that the initial state is inside a box
which may be large. The proposed method
will be compared to existing methods such as
CAPD [5] or Dynlbex [2]. Some test-cases re-
lated to robotic applications illustrate the ef-
ficiency of our approach.

Problem

Most dynamical systems can be represented
with a state equation such as @ = f(x). When
it is not possible to find an analytic solu-
tion for our equation we need an integration
scheme to determine our solution. Conven-
tional guaranteed interval integration libraries
such as Dynlbex or CAPD are able to com-
pute a guaranteed solution without requiring
much computing time when the initial condi-
tion is well described. However for some spe-
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cific cases, for instance when attractors exist
near the trajectory, these methods may have
some difficulties. In many fields, for instance
in robotics, the precision we have on our ini-
tial condition can be limited, thus the need
of a tool for parameter estimation with larger
initial boxes [3].

Our approach

Similarly to the wvariation of parameter
method of Laplace, where one looks for a gen-
eral solution knowing a particular solution of
the differential equation, our method consists
in first calculating precisely a trajectory using
an integration tool such as CAPD or Dynlbex
applied with a given precise point as initial
condition. We call this trajectory the refer-
ence (in red on Figure 1). Using the symme-
tries of the problem, we are able to calculate
the solution for a different initial condition at
a given time. We are able to do so without
the need of applying conventional integration
techniques i.e calculating each step, hence sav-
ing computation time.
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Figure 1: Integration principle illustration
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Results

Consider the system following the equations
below:

o = —x‘z’ — mlm% + a1 — a9
o = —x% — m%mg + a1+ a9
1
and an initial condition ag = (2) We use

a conventional guaranteed integration library
to compute the trajectory associated with this
system. Then we compare our approach to the
result given by CAPD for an initial condition

ol = | i 00|

represented in red in Figure 2 and Figure 3.

As shown in Figure 3 we observe a bloating
effect when using conventional interval inte-
gration method, in this case CAPD, the com-
putation stops after a time £ = 0.76s because
of the bloating effect. The approach presented
in this paper is robust to the increase of the
interval size as initial condition and is able
to carry out the integration until the end set
(here 7 seconds).
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Figure 2: Integration using Lie symmetries

We also carried out the integration with
1000 particles picked randomly from the ini-
tial box [ap] and calculated their positions at
each second up to 7 seconds. The results
obtained for both CAPD and our method is

Figure 3: Integration using CAPD only

represented in blue on Figure 2. As we are
only computing on points as initial condition
it is possible to use CAPD for our particle
cloud. We compared the computing time and
as expected our approach achieves much bet-
ter results on the computation time aspect
compared to CAPD. It takes 297ms with our
method and 92811ms using CAPD on an In-
tel Core I7-5700HQ @ 2.7GHz and 16GB of
ram . This was expected as we don’t need to
calculate each step of the integration process
but only the transformation for time step(s)
enclosing our desired time slot.
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Introduction

In 1512, the boat named La Cordeliére sunk
in the Rade de Brest. Its wreck is still there,
on the seabed or more probably under several
meters of sediments. As wrecks of this time
are rather rare, and the research area is huge,
it leads to an interesting challenge.

Since the wreck is buried under the sand,
the only sensor which is likely to detect the
wreck is a magnetometer, by sensing the
magnetic field perturbations of the anchors.
Therefore, in order to hope to find the re-
searched boat, a magnetometer should be
dragged near to seabed in all the area of re-
search. This is a very long mission and it is
intricate to be sure that the sensor is gone ev-
erywhere.

This is why Boatbot was developed. Boat-
bot is a semi-rigid inflatable boat on which
an electric motor was added behind the steer-
ing wheel. So, the boat can be regulated in
head. Based on this robot, the objective was
to develop some algorithms of control such
that the magnetometer dragged by the boat
properly follows the desired trajectories, while
guaranteeing that some constraints are always
respected.

Finding a controller

To be sure that the cable cannot be cut by
the propellers of the boat, the idea was to
put a kayak between the boat and the mag-
netometer. In this way, near to the propellers
there is only a rope which stays at the sur-
face of the water and can even at worst be cut
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without losing the magnetometer. This exper-
iment can be seen on the picture of Boatbot
presented in Figure 1.

So the objective here is to find a controller
which can control the position of the magne-
tometer by acting only on the direction of the
boat. To address this problem, a good ap-
proach is to consider a car with a trailer, and
to try to control the trailer. The trailer should
follow a vector field, for instance Van der Pol
vector field, like in Figure 2.

A robot is represented by its state vector X

P4
I
P o 8

and its evolution function f

cos(6)

sin ()

u

L% sin(f — 6,)

X =f(X,u) =

The couple of variables (z,y) represents the
position of the car, # its head and 6, the head
of the trailer. L, is the distance between the
car and the trailer (see Figure 3).

It means that a robot is a dynamic system
which is modeled by a differential equation.
And the job of the controller is to find the
input u of the system with respect to some
measurements Y [3].

The error the controller should canceled is
the difference between the course of the trailer
and the direction given by the vector field |7].
Using feedback linearization method, a con-
troller can be quite easily found and makes the
error converge toward zero in few seconds [6].
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Figure 1: Picture of Boatbot searching for La Cordeliére.

Figure 2: Simulation of a car with a trailer,
where the trailer follows the Van der Pol vec-
tor field.

State constraint

Henceforth, the aim is to guarantee that some
constraints are always respected. For in-
stance, the angle between the car and the
trailer should stay little to ensure that the
trailer will never collide with the car itself. So
here is presented a mean to show where some
constraints are validate or not, supposing the

controller works fine. This method relies only

7 I

Vg 0
O

T oy

Figure 3: Model of the car with a trailer.

on the knowledge of the vector field followed
by the robot, using Lie derivatives. This is
why there is no need here to integrate any dif-
ferential equation, like in [1, 2, 9, 10].

As the controller presented hereinabove is
supposed to be perfect, we know that the
robot will exactly follow the vector field, wher-
ever it is. So the method consists in com-
puting from any position in the vector field
the theoretical state of the robot with respect
to the controller, and deducing whether the
constraint is respected. Interval analysis [8] is
used here, helping to find the separator for a
given constraint, and to use the SIVIA algo-
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rithm [5] to validate the controller in a specific
location [4].

An example of result is given in Figure 4.
The simulation plots red circles (@) when the
constraint is not respected (when there are
tight curves), and its trajectory is superposed
on the result of the SIVIA: we are sure that
the constraint is respected when the robot is
in green background areas (m), and violated
in orange ones (m). The boundary is in gray,
and inside we cannot be sure whether the con-
straint is respected (m).

20

10

-30
=30

=20 -10 o 10 20 30

Figure 4: Example of a simulation of the car
with a trailer superposed on the SIVIA result.
It is certain that the constraint is respected
everywhere the background is green (m) sup-
posing the trailer follows the vector field.
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Introduction

Guaranteed characterisation of the set of con-
trollers stabilizing a system is a major prob-
lem in control theory. Interval analysis gives
a tool to solve this problem as described in
[2]. However it is computationally expensive
for high order systems (>7) with a lot of con-
troller gains (>5) or parametric uncertainties.
This work deals with author attempts on al-
ternative approaches to improve this compu-
tation efficiency. Section 2 recalls stability cri-
teria for systems and how they are used by an
interval analysis algorithm in robust control.
Section 3 gives some alternative implementa-
tions of stability criteria. Section 4 suggests a
different algorithm.

Stabilizing  Controllers  Set
Computation
+ e ‘ u ‘ G(p) } .

Figure 1: Closed-Loop System F

Let G(p) and K (k) be Linear Time Invari-
ant Systems (LTI). G is called the regulated
systems, p are the uncertain parameters of G.
K is called the controller and k are the con-
troller gains. G(p) and K (k) are linked in a
closed-loop system F'(p,k) as shown in Fig.
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1. F(p,k) is also an LTI system. The prob-
lem stated in this work is to find the set KCqiqpie
stabilizing F' for all values of p inside a given
set P.

Given a state-space representation of F,
(Ar(p, k), Br,Cr,DF), An internal stability
criterion for F' is given by the Routh-Hurwitz
criterion [2] : Given P(p,k,s) = det(s] —
Ap(p, k)) the characteristic polynomial of Ap
and a;(p, k) € R" its coefficients and H the
Hurwitz Matrix given by:

ag ag 0 0O O O O --- O
a3 ay a; ag O O O --- O
0 --- 0

H=|a5 a4 a3z az aip ag

0 0 0 0 0 0 O an |
F' is internally stable iff all the minors of H
are strictly negative.

As those minors have an analytic expres-
sion, this criterion is available for a set com-
putation via interval analysis. |[2] translates
the stabilizing set finding problem as a con-
straint satisfaction problem (CSP) and pro-
vides an algorithm to solve it by operating
dichotomies on an initial box of values of k.
However the complexity of this algorithm is
exponential with the dimension of the interval
box k and the evaluation pessimism increases
dramatically with the order n of the system
F for a naive implementation of the Routh-
Hurwitz stability criterion.

Alternative Stability Criteria

Following the previous statement, several so-
lutions are explored to control the computa-
tional complexity.
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The first improvement is to use the Lienard-
Chipart criterion 4] which is a direct deriva-
tive from the Routh-Hurwitz. However it is
more efficient as it tests only half the minors
of the Hurwitz matrix, giving the opportunity
to not compute the minor with the highest
degree, which suffer the most from evaluation
pessimism. For the same computational com-
plexity, it is possible to deal with systems with
one more order.

The second tested solution is to improve
the Directed Acyclic Graph (DAG) of the sta-
bility criterion expression for a more precise
interval evaluation. For that, the operator
HurwStab([a;]) is created at a low implemen-
tation level for interval computation. This re-
sults in a significant reduction in evaluation
pessimism.

The last one is to test an alternative cri-
terion based on the Argument Principle [5]
formula: given a complex function f and a
complex positively oriented contour fc where
f never equals zero,

PGy i
ﬁf(z)dz_Q (Z-Q)

where Z and (@) are respectively the number of
zeros and poles of f. The idea is to replace f
by the characteristic polynomial (which does
not have poles) to test if it has roots on the
right half plane which cause instability. It is
possible with a clever contour like on Fig. 2,
with a maximum radius fixed with Gershgorin
circles. It provides an alternative criterion as
long as the algorithm can compute integrals
with interval analysis.

Despite the addition of complexity and
pessimism caused by integral computation,
this alternative criterion seems interesting for
some problems with high order systems.

Alternative Set Computation
Algorithm

Eventually, an alternative algorithm is sug-
gested to compute the stabilizing set. It uses

s-plane r
X (0]
© x
o X
X [¢]

Figure 2: A Nyquist Contour I'

Kharitonov theorem [3]. Kharitonov states
that, for a characteristic polynomial with in-
terval coeflicients, it is sufficient to test only
four polynomial edges to prove complete sta-
bility of all polynomials in the set.

As far as the author knows, there is no
method to prove complete instability for such
interval polynomials. However, Dabbene [1]
gives a fast randomized algorithm to find
a stable punctual polynomial inside interval
polynomials. A failure of the Dabbene algo-
rithm suggests a complete instability of the
set. For a polynomial order < 14, about 1000
iterations seem to provide a reliable result.

Here, Kharitonov and Dabbene are seen as
operators taking interval polynomial coeffi-
cients and returning a Boolean (Kharitonov
is true if the set is stable, Dabbene is true if it
found a stable point in the set). Based on def-
initions given in previous sections, the author
defines two operators:

- The coefficient operator :

(p, k) = ai(p, k)

" (1)
peEP ke, a; R

- The Dabbene-Kharitonov (DK)-operator :

K haritonov(|a;])
—Dabbene([a;])
Dabbene([a;])
(2)
Using those operators, the alternative Set
Computation algorithm steps are as follows:

true if

false if

unknown if

[a;] —

1. With a given set of values for (p,k) the
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coefficient operator provides a set of poly-
nomial coefficients [a;].

2. The DK-operator is used by a paver
to provide the set of stable polynomials
given by their coefficients.

3. Based on the result of 2., a Set Inversion
Algorithm returns the stabilizing con-
troller gains set Kgaple-

This algorithm is not guaranteed as the
Dabbene test is not.
relevant because a failure of the Dabbene test
is unlikely to occur as it is explained in the
statistical analysis provided in [1|. This al-
gorithm could be efficient insofar as the KD-
operator does not introduce evaluation pes-
simism. It is not the case for the coefficient
operator but its expression is assumed to be
simple regarding Routh-Hurwitz criterion ex-
pression.

However still it seems

A discussion on the complete implementa-
tion of this algorithm will conclude the work.
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Introduction

There are different reasons for the occurrence
of uncertainty. It can appear due to model
simplifications, approximation of nonlineari-
ties, imprecise parameter knowledge and/or
order reduction as well as physical and nu-
merical restrictions of the system itself. Un-
certainty caused by measurement noise and
sensor inaccuracies are further examples. In
any case, uncertainties can be treated ei-
ther stochastically or as bounded quantities
in terms of worst case scenarios, where the
lower and upper bounds are summarized in an
interval. Hence, interval arithmetic is a com-
mon tool, see [3]. Unfortunately, its use tends
to lead to overestimation due to the so-called
wrapping effect. To avoid this, cooperativity
has already been investigated in several pa-
pers, [2, 4, 5]. A system is cooperative, if for
an autonomous dynamic system

x(t) = f (x(t)) , x€R",

all off-diagonal elements J; ;, ¢,j € {1,...
i # j, of the corresponding Jacobian
of (x)
J =
0x

are strictly non-negative according to

Ji; >0, ije{l,....n}, i#].

*Corresponding author.
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This means, that state trajectories x(t) start-
ing in the positive orthant R} = {x € R" |
x; > 0,Vi € {1,...,n}} are guaranteed to stay
in this positive orthant for all ¢ > 0 because
xz(t) = fz (.1‘1, ce ,xi_l,O,xiH, .. xn) Z 0
holds for all components ¢ € {1,...,n} of
the state vector as soon as the state variable
x; reaches the value x; = 0. The advantage
of cooperativity is the simplification of sev-
eral tasks such as the computation of guaran-
teed state enclosures, the design of interval
observers, forecasting worst-case bounds for
selected system outputs in predictive control
and the identification of unknown parameters.

Main Idea

Many system models in biological, chemical,
and medical applications are naturally coop-
erative. However, there is also a great number
of systems (typically from the fields of electric,
magnetic, and mechanical applications) which
do not show this property if the state equa-
tions are derived using first-principle tech-
niques. Hence, it is often desired to transform
such system models into an equivalent coop-
erative form. If a system

x(t) = £ (x(t), u(t)) (4)

is linear, it can be given in the state-space
representation

x=A(p) - x+B(p)-u (5)

with the state vector x and the input u consid-
ering parameter uncertainty in the elements of
the system matrix A(p) as well as the input
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matrix B(p). Moreover, most nonlinear sys-
tems can be reformulated into a quasi-linear
state-space representation

x=Ax)-x+B(x) -u, (6)

where the uncertainty lies in the state depen-
dencies due to nonlinear expressions in the
right-hand sides of (4). Both representations
(5) and (6) describe uncertain systems, which
can be transformed into cooperative forms by
means of Eqs. (1)—(3). If the system model is
controllable (or at least stabilizable) and the
desired operating state is set to x = x3 = 0
without loss of generality for the steady-state
input u = ug = 0, a feedback controller is
introduced in Eqs. (5) and (6) according to
u=—K(p) -xoru=—-K(x)-x, respectively,
leading to the following state-space represen-
tations:

x = (A(p) - B(p)K(p)) x = Ac(p) -x (7)

x = (A(x) -Bx)K(x))x=Ac(x)-x. (8)

For the transformation into an equivalent co-
operative form, we make use of a method de-
veloped in |2| for linear systems with crisp pa-
rameterization. This approach has been ex-
tended to uncertain systems in [5] and gener-
alized in |4] to cover real-life applications in an
efficient manner. It was shown that one needs
to distinguish between systems with purely
real and conjugate complex eigenvalues. For
the presented paper, we will concentrate on
the former. It was assumed that the uncer-
tain system matrix can be expressed by the
element-wise defined inequality

Zo—A<Z:=Ac<Za+A, (9

where A consists of the (symmetric) worst-
case bounds of all entries in [Ac]. Note, the
midpoint matrix Z, = ZI in Eq. (9) is as-
sumed to be symmetric in what follows. A
Metzler matrix R = pE, — I' is searched
for, which has the same eigenvalues as Z,,
with a constant 4 € R and a diagonal ma-
trix T' € R™*";, E, € R™" is a matrix with

all elements equal to 1 and I' = pl, with
p > w and the identity matrix I of order n.
If eig(R) = eig(Za), according to [2], there
exists an orthogonal matrix S € R™*" such
that STZS, respectively, is Metzler provided
that u > n||Al|max, where ||A||max denotes
the maximum absolute value of A. However,
in several practical cases finding the transfor-
mation matrix S is not trivial. Thus, this ap-
proach was converted into a computationally
feasible optimization problem formulated with
linear matrix inequality (LMI) constraints [1].
This is done with the main goal of a general-
ization to cover both possible uncertainties of
Egs. (5) and (6). Both types of system models
with time- and state-dependent parameter un-
certainties are investigated for real-life electric
RLC-circuits.

References

[1] S. Boyd, L. El Ghaoui, E. Feron, and
V. Balakrishnan. Linear Matriz Inequali-
ties in System and Control Theory. STAM,
Philadelphia, 1994.

[2] D. Efimov, T. Raissi, S. Chebotarev, and
A. Zolghadri. Interval State Observer for
Nonlinear Time Varying Systems. Auto-
matica, 49(1):200-205, 2013.

[3] L. Jaulin, M. Kieffer, O. Didrit, and
E. Walter.  Applied Interval Analysis.
Springer—Verlag, London, 2001.

[4] J. Kersten, A. Rauh, and H. Aschemann.
State-Space Transformations of Uncertain
Systems With Purely Real and Conjugate-
Complex Eigenvalues Into a Cooperative
Form. In Proc. of 23rd International
Conference on Methods and Models in
Automation and Robotics 2018, Miedzyz-
droje, Poland, 2018.

[5] T. Raissi, D. Efimov, and A. Zolghadri. In-
terval State Estimation for a Class of Non-
linear Systems. I[EEE Trans. Automat.
Contr., 57:260-265, 2012.

36



Book of Abstracts - 12" Summer Workshop on Interval methods, Palaiseau, France, July 23-26, 2019

Guaranteed Polynesian Navigation

Thibaut Nico!, Luc Jaulin *2, and Benoit Zerr?

'ECA, Lab-STICC UMR CNR 6285
ENSTA-Bretagne, Lab-STICC UMR CNRS 6285

Figure 1: Polynesian navigation

Keywords: Navigation; Intervals, Contrac-
tors, No-lost zone

Introduction

The Polynesian navigation problem asks to
move from islands to other islands without be-
ing lost. The navigation should be performed
without GPS, compass and clocks. The dif-
ficulty of the navigation is illustrated by Fig-
ure 1: the ocean is huge, the islands are small,
the boats have a dynamic which is more or less
uncertain.

Among the techniques used by Polynesians,
the observation of the stars (see Figure 2) are
useful to get the heading, but also to detect
if the boat is on the route which leads to
the desired island. The approach we will fol-
low to guarantee that we can reach an island
from another island, uses guaranteed integra-
tion |7], tube programming [6], constraint pro-
gramming [8], localization [3], contractors [2]
and interval analysis [5].

*Corresponding author.
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Figure 2: Pair of stars technique: the boat
is on the right route if the bottom star rises
when the right star sets

Formalisation

Given a set of geo-localized islands m;, 7 > 0,
the ith coastal area is:

Ci ={x|ci(x) <0}.

A robot has to move in this environment with-
out being lost. Figure 3 represents a set of
4 islands with the associated coastal zones
Cq,Cq,C3,Cy (painted blue).

We assume that (i) the coastal areas are
small compare to the offshore area, (ii) in the
coastal area, the robot knows its state, (iii)
offshore, the robot is blind and has an open
loop strategy, such as for instance go North
and (iv) the robot is described by blind state
equations

{ . éfi’ o

u () € [ul ()

where the input u(t) belongs to the uncer-
tainty box [u] (¢).
We define the set flow ® : R x R" — P (R)
as:
(I)(tl,Xo) = { a|3u() S
x = f(x,u),x(0) = xo }
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Figure 3: Islands ans coastal zones

Given the set A (for instance a coastal area),
the backward reach set [1] is defined by

Back(A) ={ x| Vg € ®,
dt>0,p(t,x) €A }

Interval analysis is often used to compute
backward reach sets in the case where the
robot is nonlinear [4]. We have

Back(AUB) O Back(A)U Back(B) .

This is the Archipelago effect which tells us
that finding an Archipelago (A U B) is easier
than finding individual islands.

Moving between coastal zones

Assume that we have m coastal sets
Cy,Co,...,i € {1,2,...} and open loop con-
trol strategies u;,j € {1,2,...} or equiva-
lently, we have set flows ®,(t,x¢). Moreover,
we assume that the control strategy cannot
change offshore. As a consequence, (i) from
C; we can reach Co with the jth control strat-
egy if C; N Back(j,Ca) # 0. (ii) From C; we
can reach Co with at least one control strat-
egy if C1 N J; Back(j, C2) # 0. (iil) From C;

we can reach Cy U C3 with at least one con-

trol strategy if C1 N Uj Back(j,CoUC3) # 0.

Figure 4: Reach an island from another island
using a 'Go-East’ strategy
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Figure 5: Reachability graph

Therefore, we define the reachability relation
< as:

o C, — Cpif from C, we can reach Cp with
at least one control strategy j.

e <> is the smallest transitive relation

which satisfies
{ Vk e K, C;, — G

3, Co 1 Back(j, Upege Ciy) #
= C, — G

Consider for instance, the hyper-graph of Fig-

ure 4 where the relation A 2 B, C means that
from A the robot can reach either B or C using
the jth strategy. For instance, in our graph

Cy NBack(l,C3UCy) # § = C1 = (Cs,Cy)

Thus, the associated reachability graph
(corresponding to <) is given by Figure 5.

In a similar way, we can also define the for-
ward reach set.

No lost zone

We define the no-lost zone as the set S of all
states that we may visit from a coastal area
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Figure 6: No-lost zone associated with the 5
islands

without being lost with the available control
strategies.
with the strategy Z; as

T; = {k|CrnBack(j, | J Ci) # 0}.
itk
If we start from Cy,k € Z;, then we will reach
at least another coastal area with the control
strategy 7. We have

Define the index set associated

=xcS

x € Back(j,; Cy)
ke

x € Forw(j, Cy),
Thus

S C U U Forw(j, Ci) N Back(j, U(Cl)

J keI i
This property will allow us to have an in-
ner approximation of the no-lost zone, which
is our main contribution. This is illustrated
by Figure 6 with 8 strategies: North, East,
South, West, North-East, East-South, South-
West, West-North.
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Introduction

In control systems, state estimators are
mainly used to filter redundant data, to elim-
inate erroneous measurements and to pro-
duce reliable state estimations in the pres-
ence of measurement noises and perturba-
tions. In 1960, Kalman set the ground for
a new class of state estimation techniques by
introducing his famous powerful yet simple fil-
ter, that considers known (Gaussian) distri-
butions of measurement noises and state per-
turbations. Sometimes, the assumptions that
the classical filter uses are not too realistic.
Therefore, as an alternative, the determinis-
tic approaches arose by considering unknown
but bounded perturbations and measurement
noises. Among this family, a particular inter-
esting approach is the set-membership state
estimation, where different sets can be used.
The choice of the considered set mainly de-
pends on the application and on the trade-off
between accuracy and simplicity. However,
despite the precision and the low complex-
ity that some set-membership state estimation
techniques can offer, there is still a gap be-
tween theory and practice in this field. In this
context, few set-membership state estimators
were tested on new technologies, in particu-

*Corresponding author.
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lar on Unmanned Aerial Vehicles (UAVs) [2],
[6] and robots [3], or extended to incorporate
physical state constraints [5]. In this work,
a zonotopic set-membership state estimation
technique is applied to the position estimation
of an octorotor model used for radar appli-
cations. The model complexity and the per-
turbations coming from different sources make
the state estimation of the drone a challenging
problem. In this case, an accurate position es-
timation of the UAV is needed for the radar
to provide high resolution images.

Zonotopic set-membership
state estimation technique

Consider the following detectable discrete-
time linear time invariant system:

Xk+1 = Ax; + Bu;, + Ewy,

1
v = Cxi + Fwy (1)

with x € R™ u € R™, yr € R™, and wy
belonging to the unitary box B"e+m,

Theorem 1. (based on [7]) Consider xo and
assume that the state xi belongs to the zono-
tope Z(pi, Hy) = pr ®HB™. Given a scalar
B € (0,1), if there exist a positive definite ma-
tric P = PT = 0 in R™*" and a matriz
Y € R"*"™ for which the following linear ma-
triz inequality (LMI) holds

P 0 A'P-C'YT
x TI'T E'TP-F'YT| =0 (2
* * P
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then 4t is guaranteed that Xpi1 S
Z(Xp41, Hy1), Yoy € Bt where:

Axy, + Buy, + Ly, — Cxy) (3)
[ALH) 7] (4)

withY =PL, T=[ET F'], A, = A—
LC and n=E — LF.

Xf+1
Hj 1

Sketch of proof: The error z; = x; — X,
between the real state and the nominal es-
timated state at time k£ belongs to the cen-
tered zonotope HpB™. At time k + 1, one has
Zir1 = Apzy + nwy, € Hy (BTt

The non increase of the P-radius [4] of the
zonotopic error can be expressed such that
max [Hyy12[p < fmax | Hyal[p-+max | Tt|3

. : . T
with the notations 2z [ZT tT] €
Bmtnetny 7z ¢ B™ and t € BT,

Using the reverse triangle inequality leads
to a sufficient condition for max(||Hyy12|/p —

z

BlHpz|3 — || Tt]3) < 0. Extensively, Vz,t,
the next expression is verified

2'H,, PHy, 12—z HyPHz—t T Tt <0

(5)
Replacing Hy11z = (A—LC)Hz+(E—LF)t
in Eq. (5) and using the Schur complement
lead us to the LMI (2).

Octorotor modeling

The Mikrokopter ARF Okto-XL is equipped
with a micro-controller that provides fused
and filtered information from the sensors
about the drone’s position. A non-linear
dynamical model together with a linearized
model around the static hovering equilibrium
with null translational and rotational veloci-
ties and null roll, pitch and yaw angles exist
[1]. The linearized model [1] can be decou-
pled into three double integrator subsystems
and then discretized with a sampling period
Ts. However, for linear position estimation
problems, we only need the two subsystems
describing the longitudinal and the altitude
dynamics, respectively:

Xlppr = AXlk + ]_3)1111]C + Eq1wy
y1, = Cx1;, + Frwy,

X341 = Ax3k + B3113]C + Egwy,
y3, = Cx3, + Fawy,

with X1, = [Zk Vi Vzk Wzk]Ta X3, =
[xk Yk erk Vyk]Ta uy, = [lez T»’ﬁ]—r’
T T
us, [EEFR L oyw = [ae v
I, Tl
Y3, = [Tk ykf, A = [Oz ;22], B; =
0 0 0 O
0 0 0 0
T, 0,B3:LO,C:[IQ 02].
m m
0 £ 0 L

The notations and parameter values are de-
tailed in [1]. Furthermore, the perturbations
and the measurement noises w; are bounded
by the unitary box B®. Additionally, E; =
& [In Oux2], Fi = v [04 Iuxz], for i €
{1,3}, with ¢; and v; two scalars representing
the accuracy provided by the drone sensors.
The control inputs FJ, Ff and FI are the
components of the resulting propeller’s force,
whereas 77 is the component of the result-
ing propeller’s torque expressed in the drone’s
frame denoted by the superscript R.

Simulation results

The highest sampling period Ts = 0.02s of all
sensors is considered. The systems are fully
controllable and observable. Based on the
GPS, altimeter and gyroscope information,
the following values are considered for vy, =
73 =1and €] = e3 = 1073, The UAV mass is
3.69kg and the inertia component I, w.r.t. to
the z-axis is 0.0869kg-m>2. The drone’s behav-
ior was tested using a Matlab/Simulink simu-
lator implementing the non-linear model with
a linear quadratic integral (LQI) controller [1]
for which the nominal control inputs are then
fed into the linear designed system. A lin-
ear trajectory is simulated to validate the ef-
ficiency of the zonotopic set-membership esti-
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mation technique. It corresponds to a take-off
to an altitude of 50m and then to a flight on
the x-axis with a linear constant speed. The
flight duration is 235s.
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Figure 2: Bounds of the altitude z

Figure 1 shows the zonotopic bounds (in
blue) of the linear position z of the drone,
whereas Figure 2 presents the guaranteed esti-
mation bounds (in blue) of the altitude z. The
real state (in red) in both cases lies inside the
bounds despite of the considered measurement
noises and state perturbations.

Conclusion

A guaranteed zonotopic set-membership state
estimation technique has been considered
to compute the guaranteed linear position
bounds of an octorotor model.
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Introduction

State estimation of dynamic systems is com-
monly addressed by modelling the uncer-
tainty as a stochastic variable, usually as-
sumed Gaussian.
systems, such problems are solved by using
a classical (KF), an extended (EKF) or an
unscented (UKF) Kalman Filter.
linear systems, particle filters have been de-
veloped to tackle non-Gaussian noise distri-
butions. However, stochastic representation
of errors is not immune to criticism as the
probability density function is seldom known
a priori. In set-membership estimation, pro-
cess and measurement uncertainties are only
assumed to vary within known bounds which
makes this type of approach very robust to
lack of probabilistic information. Various set
structures have been used to characterize the
variation domain of the system states, given
the model structure and bounds.
this results often in a pessimistic estimation,
especially for multi-modal distributions. A
more recent alternative method, first intro-
duced by [1] consists in combining the ver-
satility of the particle representation with the
robustness of set-membership method. This
translates in replacing the point particle by a
box which results in reducing significantly the
number of particles and the adverse effects of
non-linearity. Box Particle Filter (BPF) esti-

For linear or non-linear

For non-

However,

*Corresponding author.
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mators have already been applied in Simulta-
neous Localization and Mapping (SLAM) or
mobile localization |1, 7]. However, the BPF
provides a rather pessimistic solution due to
the fact that the intervals have to be aligned
along the state axis which result in loosing
potential dependencies between the resulting
estimate components. To address this issue,
an improvement of the box description could
be to combine this description with a more
precise set characterization using either ellip-
soidal [2, 4, 5] or polyhedral boundaries [6].
The aim of the present work is to build a new
box particle filter based partially on polytopic
description.

Problem Statement

Consider the following non linear discrete-
time system:

Tkl
Yk

where x; € R™ is the state vector, y; € R™
the measurement vector, f : R"™ — R a
non-linear function and wy, a process noise
vector. We denote by ng, n,, respectively, the
dimensions of the state and process noise vec-
tors. The function h : R™ — R™ is a non-
linear function and v a measurement noise
vector. Dimensions of the measurement and
measurement noise vectors are respectively n,,
and n,.

Assumption 1. The disturbance terms
wy, and v are assumed to be unknown but

bounded (UBB) noises:

= f(a:k) “+ wy,

= h(zy) + oy @

|wg.i| < 5}&,1’ =1,...,ny < HwkHi’é <1,

(2)
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okl S €= 1,00 my <= |lop] < 1.
(3)

Definition 1. A real interval, denoted [z],
is defined as a closed and connected subset of
R and a box [X] of R"* as a Cartesian product
of ng intervals: [X]| = [z1] X [x2] X ... X [zp,] =
iy [xi].

Definition 2. An n-dimensional polyhe-
dron P is defined as a set of n, vertices V;,i =
1,...,n, and ny, supporting hyper-plans H;.

Each of the nj hyper-plans is defined by
{z € R"a;z = b;}, where al € R® and b; €
R Therefore, a n-dimensional polyhedron P
supporting n, hyper-plans is defined by :

{r € R"|Az < b}, (4)
where A € R™*™ q; the i-th row of A, b €
R™ and b; the i-th component of b.

Proposed algorithm

The algorithm is based on the BPF algorithm.
The main originality consists in modifying the
update step of the BPF by replacing the mea-
surement boxes by polytopes to improve ac-
curacy.

Initialization

As in the BPF, the initialization consists in
creating N, box particles from the initial
box with minimum intersection and equiva-
lent weights.

Prediction

In this step, each state predicted particle is
computed based on the previous state esti-
mated particle, via a classical interval prop-
agation.

Measurement update

The observation function h is linearized at the
center 2, of the predicted box:

h(zy) = h(2k) + Cr(zk — k) + ok, ()

where C), = 8%?“); oy, is the linearization er-

ror. The measurement bounds [my] are ob-
tained as [og] + [vg]. For each measurement
Yk, two bounding hyperplans are defined as
h(zg) + Cr(zr — Tx) = yr + min([myg]) and
h(ay) + Cr (v — T) = yr +maz([mg]).

Using the approach described in [6], the
measurement update step consists in comput-
ing the feasible set for each particle by inter-
secting the predicted box particles with the
two half spaces associated with each of the
bounding hyperplans. The volumes of the re-
sulting polytopes are computed as in [3], and
will be used as weight for each polyhedron par-
ticle.

Estimation

At the k-th step, the state is usually ap-
proximated using the weighted particles, as
Ty = Zjﬁ’l wizi. In the case of box particles,
so on the BPF, the state is actually computed
as T = Zf\ﬁ’l wiC}, where C} is the center of
the box particle i. However, in our proposed
filter, the new estimated state is computed as
the center of the polytope ¢ which is obtained
as C! = ni 2721 Vi,; where Vy, ; is the j-th
vertice of the polytope ¢ at time k.

Similarly to the BPF, the associated covari-
ance matrix is given by Pj, = Zi\ﬁ’l wi (Ty —
) (@, — )"

Resampling

The resampling phase consists in eliminating
polytopes associated with the lowest weights,
and in dividing the polytopes associated with
the highest weights. These weights are ob-
tained by computing the volume of each poly-
tope. After selection of the polytopes to be
kept, each of those is approximated by the
smallest box containing it. Figure 1 illustrates
the measurement update phase. It can be seen
that the polyhedral update (in green) makes
the resulting estimation uncertainty less pes-
simistic than with the classical Box Resam-
pling (in black).
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Several examples of non linear model esti-
mation have been tested to evaluate the aver-
age precision improvement resulting from the
use of the new method.

4-5‘
4\
3.5 y
39 \ ] |
2
! |
1 AN
\ (A
; 15 2
0 0.5
Figure 1: Illustration of the measurement

update using polyhedrons. Blue: predicted
box. Red: half spaces associated with each of
the bounding hyperplans. Green: set of new
boxes after resampling. Black: set that would
be obtained with classical Box Particle Filter.

Conclusion

In this paper, improvement of box particle fil-
ter based on polytopic measurement updating
is proposed. Different examples of application
have been compared with the BPF and the
results are promising. The estimate is more
precise, especially if all the variables are mea-
sured. However, for now, the computing time
is still uncertain because it depends on the di-
mensions of the state and the measure. Future
work includes analysis of the computation of
the bounds on measurements allowing the best
compromise between reliability and precision.
Evaluation of weights depending not only on
the volume of the resulting polytopes is also
under study.
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Motivation

In [8], Ordonez and Freund have shown that
71% of the instances from the Netlib test suite
[7] - a benchmark suite containing difficult but
practically relevant linear programming prob-
lems - have infinite condition measure. Due
to their practical background and possible in-
accuracies in the input data, these problem
instances are very interesting for the applica-
tion of verification methods.

However, the solvability principle of verifi-
cation methods states that verification meth-
ods solve well-posed problems [10]: it is typ-
ically not possible to compute rigorous in-
clusions for the optimal value of an ill-posed
problem using floating-point arithmetic be-
cause even the slightest perturbation may
change its feasibility status. Without incor-
porating additional knowledge about the ill-
posed instances from the NETLIB test suite,
verification tools are not able to compute ver-
ified bounds for these problems (cf. [5]).

We are proposing an error free preprocess-
ing procedure to replace a given ill-posed lin-
ear programming problem with an equivalent
well-posed problem. We demonstrate the ap-
plicability of our procedure by computing new
verified bounds for a large number of ill-posed
problem instances from the NETLIB linear
programming library.

49

Preliminaries

We are concerned with linear programming
problems of the form

inf

T T
crrr+c x
Tf,2] S f (e

Apzy+ Ajwy = (LP)

leO)

where xy € R"/,2; € R™ are free and non-
negative decision variables, respectively, A, €
R™*"e h e R™ and ¢, € R™ for o € {f,I}.

In accordance with Renegar’s definition in
[9], a feasible instance of (LP) is ill-posed if in-
finitesimal small perturbations can render the
problem infeasible. This is precisely the case
if the sets {Afxy + Ajz; | 2, > 0} and {b} are
separable by a hyperplane, but not strictly so.

If w € R™ is a normal vector to such a hy-
perplane, then

(Af:Ef + AZI‘Z)TU < vl (1)

is satisfied for all zy € R"/,0 < x; € R™. It is
straightforward to show that (1) is equivalent
to the conditions

(Apzp)Tu=0, (Az)Tu<o0, b'u>0.
Since the separation is not strict, there exist
xy and a non-negative vector x; such that (1)
is satisfied with equality and therefore b'u =
0. Summarizing, one can prove the following
crucial equivalence.

Proposition. A feasible instance of (LP) is
ill-posed if, and only if, the conditions
Afu=0, Afu<0, b'u=0 (2

are satisfied for non-trivial vectors u € R™.
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Reduction procedure

The conditions in (2) lead to another linear
programming problem which can be used to
compute suitable vectors u. If w = 0 is the
only feasible solution to this problem, then
(LP) is well-posed. Otherwise we found an
indicator for ill-posedness.

Moreover, (2) can be used not only to de-
tect ill-posedness but also for its removal. For
any u satisfying (2) and every feasible point
(xf,2;) of (LP), we have

0= (Apzs+ Ay —0) u= af Afu
~
=0 >0 <0

and therefore

Vi<i<ng: (Afu);-(2);=0. (3)

If the equality constraints of (LP) are lin-
early independent, by which u # 0 implies
[A;, Ay, b]Tu # 0, then

di: (AZTU)Z 7& O, (xl)z = 0.

In this case, (LP) can be reduced to a smaller
equivalent linear programming problem by
eliminating the respective entries (x;);. On
the other hand, if there are linearly dependent
equality constraints, we may remove them and
again obtain a reduced equivalent problem.
This can be repeated up to the point where
we derive a well-posed problem.

Following, one may use some verification
tool for linear programming problems to com-
pute verified bounds also for the original (LP).

Verification

The reduction approach is not exactly a new
concept. The set described by the conditions
in (2) is strongly related to the set of dual
recession directions [2, 3] and our reduction
approach is a specific form of facial reduction
[1, 2, 6].

The actual difficulty lies in the verification
of the reduction procedure. How can we com-
pute rigorously an interval U that contains an

Problem only SDPT3 VSDP with (PP)
25FV47 1.50 x 1013 1.94 x 10~8
CZPROB 1.67 x 1071 1.14 x 1078
MODSZK1 7.67 x 1018 1.02 x 1072
SCFXM1 1.42 x 10710 3.69 x 1079
SHIP12S 8.70 x 10! 9.48 x 10710

Table 1: Duality gaps for selected LPs

actual solution to (2) but not the trivial vector
of all zeros?

After using an auxiliary linear programming
problem to compute an approximate solution
to (2) and deciding which entries of u are
nonzero via a simple threshold approach, the
task reduces to determining and verifying lin-
early dependent equality constraints. By ex-
ploiting a line-up of presuppositions that are
satisfied for most instances from the NETLIB
linear programming library [7], it is actual
possible to reduce the respective set of equal-
ity constraints to a linearly independent basis
in a rigorous manner.

To demonstrate the applicability of our ap-
proach, in Table 1, we present relative dual-
ity gaps for some ill-posed instances from the
NETLIB library. We chose problems for which
VSDP [4] fails to compute rigorous bounds
without prior preprocessing (PP). The used
solver is SDPT3 [11].
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Introduction

Numerical integration is one of the fundamen-
tal tool of scientific computation. Providing a
reliable result to such problem is important for
validated simulation [1] or for global optimiza-
tion with a continuous objective function [3].
An important work on inclusion methods for
integral equations can be found in [2]. In our
presentation, we propose an efficient guaran-
teed method for the computation of the inte-
gral of a nonlinear continuous function f be-
tween two interval endpoints [z1] and [z3], we
call interval integrals:

Definition 1 (Interval integral). Let f: R —
R, a continuous function and [z1], [z2] €
IR two intervals. The interval integral of f
with [z1] and [z2] as endpoints is denoted
f[[m] f(z)dz and corresponds to the set

1]
n e {962} }

[z2]
fayis = {
[z1] oo / i
(1)

This set considers all the integrals with the
endpoints taken in the intervals [z1] and [x2].
Three cases can occur whether the interval
endpoints [z1] and [z2] are disjoint, intersect
or one is included in the other.

The endpoints are disjoint As intro-
duced in [2], an interval integral as defined in

*Corresponding author.
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Definition 1 where the endpoints are disjoint
can be decomposed as follows

f[ x)dx —fxl x)dx
+f$1 dx (2)
+f[902]

The endpoints intersect The interval in-
tegral in Eq. (1) can be subdivised with

[22] (2]
f(z)dx :/ f(x)dx
[:r1] [21,22]
332,:131 [1‘1712]
U / 2)dz | J / (3)
[z2,77] [z2,77]

The first and the last interval integrals in the
right member of Eq. (3) are of the same type
as the one where endpoints are disjoint except
that the integral can be equal to 0 when taking
both the same endpoints.

One endpoint is included in the other
When [z1] C [x2], we have zp < 21 < T1 < T2
and the same decomposition as in Eq. (3) is
possible:

[x2] [z2.21]
dr = x)dzx,
f(@) /[ f@)

[xl 931]

U/[ﬂﬁl]f s U/[m,m

[z1]

(4)

so we go back to the already treated kind of
interval integral that occurred in the previous
cases.

We see that in all cases, only three interval
integrals occur:

[z]

/[ S [ g [ e o

[z]
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Flgure 1.  Example of computation of
f[ l x)dx for X* = {xzf, x5, 24} (blue: maxi-
muin; red. minimum).

K(z) =] 3 =3

.

Candidates

B e

Figure 2:

f[I]

Example of computation of
x)dx for Xy = {a7, x5, 2%}

Producing the minimum and the maximum
of these interval integrals requires the parts
where sub-integrals are positive and parts
where they are negative. The change between
positiveness and negativeness of the integral
occurs at z such that f(z) = 0. Comput-
ing the minimum and maximum then requires
to produce the set X* = {z € [z] : f(z) =0}.
The minimum and the maximum candidates
for all the interval integrals in Eq (5) can be
defined using X*. When the arity of A" is fi-
nite, the set of candidate to consider is then
finite as well. Figure 1 provides an illustration
of the candidates for f[i] f(x)
we only have to consider 4 integral candidates
to be the minimum and the maximum. In
Figure 2, an illustration of f[ 2l
trated. The method for the Computatlon of an

dx. In this case,

x)dz is illus-

interval integral consists in the computation
of the set A* and to find all the candidates to
be the minimum and the maximum of the set
described in Eq. (1). The method then pro-
vides the interval outer approximation of this
set and also the endpoints at play.

Example We consider the computation of

4z The result is:

the interval integral f[o 4 Tia2:

[

The implementation of the computation of
any interval integral is linear on the arity

of X* for f [m] x)dx and f[m] x)dx. For

f[ x)dx, we need to consider the backward
1ntegrals as well since the first endpoint can be
greater than the last one. The proposed algo-
rithm is factorial on the arity of A*. This will
be detailed in the presentation.

dx
1+ x2

dx
1+ x2

] C [0,0.78543] (6)
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Introduction

As described in the Market Report from Eu-
ropean Global Navigation Satellite Systems
Agency (GSA), satellite-based navigation will
substantially contribute to the future innova-
tion of self-driving vehicles (see [1]). In au-
tonomous applications, especially in safety-
critical scenarios, a false estimation of vehi-
cle state can result in catastrophic accidents,
which requires the high accuracy and integrity
of the navigation solution. To maintain the in-
tegrity of a global navigation satellite system
(GNSS)-based navigation system, the faulty
GNSS observations caused by signal interfer-
ences and other possible reasons shall be de-
tected, identified and excluded. Since the
open service of the newly developed EU satel-
lite navigation system Galileo is in operation,
the combination of GPS and Galileo provides
the modern navigation systems more available
satellites in view. However, a higher num-
ber of satellites also increases the possibility
that satellite observations contain a fault or
even multi-faults. Therefore, identification of
multi-faults becomes a crucial and challenging
task to maintain the integrity of GNSS-based
navigation systems.

The previous work [2] presents the develop-
ment of a fault detection and exclusion (FDE)
algorithm of GNSS measurements. The ap-
proach is an extension of an existing tightly-
coupled navigation filter, which integrates the
measurements from GNSS and an inertial

*Corresponding author.
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measurement unit (IMU). In 2], FDE bases
on the receiver integrity monitoring (RAIM)
approach, which is a pure statistical method.
RAIM predicts pseudorange residual, which is
based on estimated reference vehicle state us-
ing least square method, and uses the resid-
ual to detect and identify pseudorange faults.
This method might not be adequate, when
many of the measurements are faulty, since it
is originally developed under single fault as-
sumption. This work concentrates on multi-
faults identification, when the conventional
statistic based approach cannot provide a cor-
rect identification solution certainly.

In recent years, an alternative localization
method, Set Inversion via Interval Analysis
(SIVIA), is developed under such concern in
[3] and applied to realize robot localization in
[4]. SIVIA guarantees integrity and estimates
a trust region of the antenna position fulfilling
a predefined confidence level. Further, robust
SIVIA (RSIVIA) approach is applied for satel-
lite positioning in [5], which allows to estimate
the trust region under the assumption of er-
roneous pseudorange measurements. Hereby,
it is possible to identify outliers in the GNSS
observations by checking the compatibility of
each GNSS measurement and the estimated
trust region. This trust region is calculated as
a wrap of several sub-pavings, which makes
it less sensitive with the pseudorange errors,
i.e. the pseudorange error should be relatively
big to be identified. Another drawback of this
approach is its computational load, because
RSIVIA begins with an initial guess of an ar-
bitrary big box, bisects it into small boxes and
operates on them separately and iteratively.

The present research applies RSIVIA for
fault detection and identification in a dual-
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constellation based-navigation system, where
RSIVIA is executed in an iterative process:
it starts with the assumption that no fault
exists in the observed measurement space.
Whenever an empty trust region is returned,
RSIVIA assumes one more fault existing in
the measurements. This iterative process con-
tinues until a non-empty trust region is esti-
mated. Instead of checking the compatibil-
ity of each GNSS measurement with the es-
timated trust region [5], which is a wrap of
several sub-pavings, the compatibility of these
measurements with each existing sub-paving
is checked to identify the faults. To reduce the
computational load, RSIVIA does not start
with an arbitrary big box, instead, the middle
point of the initial box is the estimated states
from the navigation filter and the size is calcu-
lated as a function of maximum dynamic from
the experimental vehicle.

This extended abstract contains the follow-
ing contents: First, the background of current
work was introduced, including the motivation
and previous work. Then, the approach ap-
plied in this work was described briefly. Fur-
ther, the next section describes the measure-
ment setup that is used to validate the ap-
proach and provides the first experimental re-
sults. Finally, the last section draws the con-
clusion and provides an outlook for the on-
going and future developments.

Experimental Validation

Measurement Setup

The test trajectory in the experimental vali-
dation is defined and simulated in a NCS TI-
TAN GNSS simulator from IFEN GmbH. The
TITAN generates GNSS observables and sup-
ports all existing GNSS systems and provides
up to 256 signal channels. Further, the iner-
tial measurements are also simulated by TI-
TAN, with respect to the defined trajectories,
the virtual vehicle characteristic and the noise
level of a real LORD MicroStrain 3DM-GX4-
25 industrial-class IMU-sensor. Compared to

Result of Fault Identification
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E20 ——q © Satellite unavailable

E19 { @ Correctidentification |
E09
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G4 ‘ ‘ ‘ ‘ | | ‘ ‘ ‘

100 140 180 220 260 300
time in sec

Figure 1: Identified erroneous satellite signals

real world measurement campaign, the TI-
TAN can generate the GNSS signals with
feared event, which is the scenario containing
pseudorange errors, and record it, which can
be used as the reference of the fault identifi-
cation outputs.

The generated GNSS signal is received and
decoded by a Septentrio AstRx3 HDC receiver
at a rate of 10 Hz. The navigation filter is im-
plemented on a 900 MHz single core Rapid
Control Prototyping (RCP) unit, called Mi-
croAutoBox from the manufacture dSPACE.
The communication between the receiver and
the RCP unit is achieved via serial inter-
face. The receiver provides a pulse per sec-
ond (PPS). Using the PPS, the communica-
tion and processing delays of the receiver are
compensated (see [6]). All the GNSS and IMU
measurements are recorded and the test sce-
nario with RSIVIA is reproduced in a post-
processing environment.

Experimental Results

Figure 1 shows the first experimental results of
the fault identification of multi-faults in GNSS
measurements. In Figure 1, the label of y-axis
shows all satellites that are simulated in this
test, where G’ stands for GPS and 'E’ for
Galileo satellites. In total, seven GPS L1/L2
satellites and seven Galileo E1/E5a satellites
are simulated. In this figure, the black parts
of the lines show the epochs, when a satellite
is available for the RSIVIA otherwise, it is in
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gray. Satellite E20 is simulated during the en-
tire test, but blocked by the navigation filter
because of its low elevation angle. The area
between the two orange dashed lines shows
when the feared events occurs. As recorded,
six of the 14 simulated satellites have pseudo-
range errors with a constant amplitude of 50
meters. At the beginning of the feared events
and shortly after the feared events, when the
receiver observed a rapid change in the pseu-
doranges, it stops transmitting those suspi-
cious signals. As a result, the recorded feared
events are identified correctly using RSIVIA,
which is showed in green. In this experiment,
missed detection or false identification does
not occur, with a proper choice of the max-
imum acceptable size of sub-pavings, which is
O meters.

Conclusion

The present work applies RSIVIA in a GNSS-
based navigation system for the fault detec-
tion and identification, which concentrates on
a more reliable identification of multi-faults in
GNSS signals. The approach was validated in
a test campaign with a GNSS simulator. The
result shows that, all six satellites with feared
events was successfully identified by RSIVIA,
which makes it a promising alternative for
conventional integrity methods like RAIM.

The present extended abstract only pro-
vides the first results of the on-going work,
which concentrates on comparing RSIVIA
with conventional RAIM and research a con-
cept to combine them both.
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Introduction

Guaranteed protection levels of the Global
Navigation Satellite System (GNSS) are of
great importance, especially for the safety
critical application such as: landing approach
and navigation of autonomous vehicles. In
order to guarantee the computed protection
levels, reliable outlier detection and exclusion
algorithms must be apply. In the past 30
years, different algorithms have been investi-
gated based on statistical hypothesis testing.
Thanks to their out-performance, the resid-
ual based test statistics and the solution sep-
aration have gained most interest compared
to other algorithms. However, statistic-based
fault detection and exclusion algorithms do
not guarantee a safe navigation when the un-
derlying assumptions on error probability den-
sity functions may not be fulfilled. In addi-
tion, interval-based fault detection techniques
have been investigated in literature e.g: q-
relax intersection. This technique guarantees
the protection level but it suffers from low ac-
curacy in the multiple fault situation.

In this work, we propose a fault detection
and exclusion technique based on determin-
istic observation intervals. The inconsistency
of the positioning problem is indicated by the
size of the polytope obtained from the inter-
section of the observation intervals. For the
optimal case of no observation noise and no
outliers, the polytope is a zonotope. Thus,
we will use the normalized relative volume be-
tween a nominal polytope (zonotope) and the

*Corresponding author.
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actual non-regular polytope as indicator to de-
rive an outlier detection.

The observation intervals are determined
from sensitivity analysis of the correction
models and the expert knowledge of the size
of remaining errors. Applying the interval
bounds on both direction of the observation
transforms the navigation problem from a sin-
gle point position to a solution set represented
by non-regular polytope. If the observation
intervals contain the actual observations, then
the solution set guarantees to contain the true
position. If biases occur for some observa-
tions, different situations can happen. For
large biases, the solution set is empty which
indicates the bias and can serve as detection
criteria. When small biases occur, the solution
set is not guaranteed and also not empty. In
order to detect those type of biases, a thresh-
old is proposed and applied on the relative vol-
ume which indicate the level of inconsistency
between the intervals and the actual observa-
tions. Monte Carlo simulations are performed
on different GNSS positioning scenarios for a
better understanding of the inconsistency be-
havior.

Methodology

The non-linear GNSS navigation equation Eq.
(1), is linearized via Taylor expansion at an
approximate initial position. As a result, we
get the system of equations represented in Eq.
(2). Then applying the interval bounds on
the observed minus computed values, we get
a system of inequalities Eq. (3) which can be
intepreted as a hyperplan representation of a

polytope.
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Adx =dl

(2)

dl—-A<Adk <dl+A (3)

where sv indicates the space vehicle and u the
user, [ is the pseudorange measurements, cdt,,
and cdtg, the receiver and satellite clock offset,
respectively, A the design matrix, dX the es-
timated state vector, and A the interval error
bound of the observations. Then a primal dual
polytope algorithm is used to transform the
hyperplane representation into a vertex repre-
sentation of the polytope.

The shape, volume and position of the poly-
tope depend on the observation errors, inter-
val bounds, and satellites geometry. As the
observation errors increase, the volume of the
polytope decreases till it becomes empty for
large outliers 4.e: the true observation is out-
side the interval bounds. To measure this in-
consistency in the observations, the nominal
polytope (zonotope) is computed and com-
pared to the regular polytope, Eq. (4).

Vz=Vp

-ZL W

Inconsistency =V,

Results and Discussion

We perform a Monte Carlo simulation to un-
derstand the behavior of the inconsistency
measures in terms of geometry, A and biases.
Fig. 1 shows the results of the simulation,
where 7 different scenarios with different num-
ber of satellites in view and geometrical dilu-
tion of precision GDOP (Table 1) have been
analyzed. 1000 epochs have been simulated
for each run, where a ramp bias is introduced
starting from epoch 100 and ending at epoch
500. We simulate GPS code measurements
with white noise (0,0 = 1m) and a clock error
with linear drift and white noise (0,1m).

EB = 4 m, Biased PRN = 10
B

* *
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* Scenario
Scenario
* Scenario

| * Scenario
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* Scenario
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Figure 1: Inconsistency measures: a. different
scenarios, b. different applied error bounds, ¢

and d. different biased measurement.
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Sce 1 2 3 4 5 6 |7
Ngy 9 8 6 10 7 516
GDOP (23124 (3320331119

Table 1: GDOP and number of satellites for
each scenario in the Monte Carlo simulation.

Fig. 1.a shows the results when the A are
fixed to 4 meters and the biased satellite is the
same for all scenarios. It is clear that differ-
ent scenarios behave in a different way to the
same biased satellite. In figure 1.b the sce-
nario (4) and the biased satellite (PRN 10) is
fixed while varying the error bounds A. The
inconsistency behave in different way with and
without biases. As the error bound increases
the mean value of the inconsistency decreases
and the slope of the inconsistency in the bi-
ased region decreases and number of empty
sets decreases.

Fig. 1.c and 1.d display the different biased
satellites where the geometry and the A were
kept fixed. Fig. 1.c depicts a good geometry
situation (scenario 1; GDOP = 2.3) and re-
veals the same effect for different biased satel-
lites, while Fig. 1.d depicts the bad geometry
(scenario 6; GDOP = 11) and implies differ-
ent behavior of the inconsistency for different
biased satellites. This behavior depends on
the line-of-sight direction of the biased satel-
lites and the geometry of the other satellites in
view. A good explanation and demonstration
is presented in [1].

The Monte Carlo simulation reveals the
complexity of the inconsistency measures de-
rived from the relative volume of polytopes.
For simplicity and to test the algorithm on
a real data, we apply a simple threshold test
based on the mean value and the standard de-
viation of the relative volume. Fig. 2 shows
the cumulative frequency of the 3D position
error with and without applying the fault de-
tection and exclusion on the inconsistency.
The test shows a 25.6 % improvement in po-
sition where the root mean square of the po-
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sition error decreases from 9 m to 6.7 m.

Conclusions

In this study, a new fault detection and ex-
clusion method is developed and tested with
simulated and real data. First results show
around 25 % improvement in the positioning
error with simple threshold test. However, the
behavior of the inconsistency measures is more
complicated and varies from situation to an-
other as the Monte Carlo simulation suggest.
In the future more sophisticated test will be
investigated.
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Introduction

For navigation in the absence of GPS, mobile
robots often fuse information from both laser
scanner and camera to take advantage of both
sensor modalities [1]. While the laser scanner
allows to measure accurate distances to the
environment, camera images can be employed
to re-identify salient features over time and
space. However, to fuse data from both sen-
sors, the extrinsic transformation - i.e. the
rotation and translation between the sensor
coordinate systems - has to be known.
Generally, all approaches for the extrinsic
calibration between camera and laser scanner
can be divided into two categories: target-
based (e.g. using a checkerboard) or target-
less (by relying on natural image features).
Since the target-less extrinsic calibration is
usually less accurate due to the problem of ac-
curately identifying the same features in both
laser scan and camera data, we omit it and
focus on the target-based calibration. Unnikr-
ishnan and Hebert employ a checkerboard for
which they extract the plane parameters from
the data of both sensors [2|. Since their ap-
proach requires corresponding plane parame-
ters from at least three different checkerboard
poses, Zhou et al. aim to reduce this num-
ber by incorporating additional features into
their non-linear optimization [3]. Instead of
only extracting the checkerboard’s plane, they

*Corresponding author.
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Figure 1: To find the rigid body transforma-
tion between camera and laser scanner, con-
sisting of the rotation R$ and the translation
Tg, we extract plane, line and point features
from the data of both sensors.

also identify the border lines in both the cam-
era image and the laser scan. Consequently,
the authors integrate these line features as ad-
ditional constraints, and can thus reduce the
number of required checkerboard poses while
also increasing the calibration accuracy.
However, both presented approaches ne-
glect the underlying uncertainties and their
accuracies can only be assessed by compar-
ing the resulting transformation to ground
truth information. This poses a problem since
ground truth is generally not available and the
results from Zhou et al. show that the accu-
racy varies significantly with the number and
diversity of chosen checkerboard poses [3].
Furthermore, both approaches assume zero-
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However, prior
to the extrinsic laser-camera calibration, an
intrinsic camera calibration needs to be per-
formed. Here, imperfections leading to biased
intrinsic camera parameters can occur. Sub-
sequently, these parameters are employed to
establish a connection between image pixels
and real world coordinates, resulting in bi-
ased (non-zero-mean) features for the follow-
ing extrinsic calibration. Likewise, the laser
scanner’s distance and angular measurements
can be biased due to an imperfect calibration,
leading to systematic errors for the extracted
plane and line features.

mean noise for the sensors.

Thus, we propose to assign an unknown
but bounded error to the sensor measurements
and use interval analysis to propagate the er-
ror from input sources to the final calibra-
tion result. On the one hand, this allows us
to model unknown systematic errors for both
sensors. On the other hand, we can immedi-
ately assess the extrinsic calibration accura-
cies by inspecting the corresponding interval
widths. Similar work - although for a differ-
ent application - has been done by Sandretto
et al., who introduce a method to calibrate a
cable-driven robot [4].

Extrinsic Calibration

We extract the same plane and line features
as proposed by Zhou et al. 3], but constrain
the rigid body transformation even further by
computing the checkerboard’s corner points.
Figure 1 shows the general idea. All compu-
tations are performed in a bounded-error con-
text, meaning that we start by modeling the
sensor errors with intervals and extract inter-
val domains for the desired features.

To identify the aforementioned features in
the camera image, we solve the Perspective-n-
Point problem under interval uncertainty [5].
This allows us to establish a connection be-
tween the camera coordinate system and the
checkerboard coordinate system. By taking
advantage of the fact that the dimensions of

the checkerboard are known, we can imme-
diately compute a box enclosing the corner
points and derive the boundary lines as well
as the plane parameters accordingly.

To find the plane parameters in the laser
scan data, we force the corresponding inter-
val boxes on a common plane by employing a
forward-backward contractor in combination
with branching. Subsequently, we find bound-
ary points residing on the checkerboard’s bor-
der and fit a line through them to determine
the boundary lines. Afterwards, a box enclos-
ing the corner points can be computed by in-
tersecting adjacent boundary lines.

In the following, we introduce the variables
required to establish the constraint satisfac-
tion problem (CSP). Generally, a right super-
script C or L indicates that the particular fea-
ture is given in the camera or laser scanner
coordinate system, respectively.

L

e n’ and n® are the unit checkerboard

plane normal vectors.

o df and d¢ are unit direction vectors de-
scribing the same checkerboard boundary
line i € {1,...,4}.

° ZLJ and Qi(;; are points on the line ¢ with
j € {177Nz} and k € {1,2} N; is
the total number of points on the line %
which we extract from laser scan data. In
contrast, we determine only two points on
every line ¢ for the camera - namely the
two adjacent corner points.

° PlL are scan points on the checkerboard
with I € {1,...,N,}. N, is the total
number of scan points on the plane.

e d% is the distance from the camera coor-
dinate system’s origin to the plane.

e CE and CC are corresponding checker-
board corner points, m € {1,...,4}.

Finally, we are able to formulate the CSP
that employs the extracted features to con-
strain the rigid body transformation, which
consists of the rotation matrix R and the
translation vector TY.
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x o7 (°) o7 (°) vi (©) L7 (em)  TF (cm) T (cm)

z* 90.0 0.0 0.0 —27.0 15.0 ~12.0

[z]  [89.6,90.3] [-0.4,0.3] [-0.1,0.3] [-28.8,—25.0] [13.1,16.7] [—13.1,—11.0]
w([z]) 0.7 0.7 0.4 3.8 3.6 2.1

Table 1: Results from simulation. The rotation matrix Rg is expressed using the three Euler
angles 9%, wg and qﬁg. Besides, T} = (,T g WA g ZT%)T. We depict the true transformation
parameters x*, the computed intervals [x] and the corresponding interval widths w([z]).

C C L _.C 4L 4C
RL,TL,I'I , 11 7d7; 7di 5

Variables: ij,QSC,PlL,dC,CTLR,Cfn
Constraints:

1. RgnL =n"

2. RYdF =d¢

3. (1-af (@)7) (REQE +TF - Q) = 0
4. n® (REP} +TF) +d” =0

5. RYCL +1¢ =Cf

[RT], [TZ], "], (], (7], [df],
[QF1. 1QG] P11, [d], [Crl, [C

To solve the CSP, we build a forward-
backward contractor for all constraints. In
principle, one corresponding laser scan and
camera image suffices to compute the transfor-
mation. However, by combining the contrac-
tors built from different checkerboard poses,
the accuracy can be increased.

Domains:

Results

Our results for simulated data show that we
are able to reliably enclose the true transfor-
mation parameters for different transforma-
tions. The results indicate that our method
can cope with outliers by employing a g-
relaxed intersection and performs accurately
for different error intervals. Table 1 depicts
exemplary results.

Moreover, we collected data using a typi-
cal laser scanner and camera setup to demon-
strate the applicability of our approach to real
data. The resulting intervals are consistent
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with the parameters computed using the ap-
proach of Zhou et al. [3]. Unlike their method,
however, our approach allows a direct assess-
ment of the accuracy.
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Introduction

In recent years, numerous interval-based simu-
lation techniques have been developed which
allow for a verified computation of outer in-
terval enclosures for the sets of reachable sta-
tes of dynamic systems represented by finite-
dimensional sets of ordinary differential equa-
tions (ODEs). Here, especially the evaluation
of IVPs is of interest, when both the systems’
initial conditions and parameters can only be
defined by finitely large domains, often repre-
sented by interval boxes. Suitable simulation
techniques make use of series expansions of
the solutions of IVPs with respect to time
and (possibly) the uncertain initial conditions
as well as of verified Runge-Kutta techniques.
Solution sets are then typically represented by
means of multi-dimensional intervals, zonoto-
pes, ellipsoids, or Taylor models, cf. [5].

In most of these approaches, variants of the
Picard iteration [1]| are involved, which either
determine the sets of possible solutions or at
least worst-case outer enclosures with which
time discretization errors are quantified. An
example for a solution routine based entirely
on this iteration is the exponential enclosure
technique published in 9] and the references
therein. It is applicable to systems with non-
oscillatory and oscillatory behavior if the so-
lution of the IVP of interest shows an asymp-
totically stable behavior. For non-oscillatory

*Corresponding author.
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dynamics, the solution is determined by a real-
valued iteration, while complex-valued inter-
val analysis [7] is employed when eigenvalues
with non-zero imaginary parts arise after a li-
nearization of the state equations.

Although such enclosure techniques are well
studied for IVPs of integer-order ODEs, the
analysis of fractional-order differential equa-
tions (FDEs) has not yet received the same
amount of interest. FDEs can be used effi-
ciently in many engineering applications if the
frequency response of a dynamic system is not
characterized by variations of the amplitudes
that consist of multiples of the slope £20dB
per frequency decade. The same holds for
changes of the phase responses which do not
coincide with integer multiples of £7, cf. [6,8].
In such cases, FDEs (for real-life applicati-
ons often of the so-called Caputo type) can be
used to significantly enhance modeling accu-
racy in comparison with integer-order ODEs.
First extensions of the Picard iteration for
determining interval enclosures to IVPs for
FDEs were published in [4]. Practical applica-
tions where FDEs have significant advantages
over classical ODEs can be found exemplarily
in the field of modeling and state estimation
for battery systems [10].

In the following, a brief summary of an ex-
tension of the exponential enclosure technique
for FDEs published in [9] is given.

Interval Methods for FDEs

Consider the commensurate-order FDE sy-
stem of Caputo type [6, 8]

x(t) = A (x(1)) - x(t) , x(t) €R" , (1)
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with 0 < v < 1, where initial conditions
for x(t) at ¢ = 0 are defined in analogy to
classical IVPs for integer-order ODEs. Then,
for the iteration step k, (complex-valued) pa-

rameters /\g"€> with [A]" = diag{[)\i]<”>},

i€ {l,...,n}, are determined in the ansatz
x(t) € [x.] () = Eun (A1) -#) %] (0), (2)

where EV’1<[A]<K> -t”)
trix with the element-wise evaluation of
the Mittag-Leffler function [3] E,(¢) =

is a diagonal ma-

0 i
2‘6 W According to [9], the parameters
i

of the enclosures (2) are computed by
Y = ay ([Xe] ) ([t]))

+ Z{aij (B ™ (1))
7

| E,q (D\j]“> : [ﬂ”) [zey] (0)}
By (] ) e O

3)

In this contribution, simulation results for
verified IVP solutions for FDEs are presented
in comparison with corresponding analytic so-
lutions given, for example, in [2].

Finally, current research directions will be
pointed out together with possible solution
approaches for yet open problems resulting
from the fact that FDE models represent me-
mory effects over infinitely long time horizons.
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Introduction

An interval aims to bound all the values of
an uncertain variable, for example provided
by a measurement device [5]. This approach
is highly effective for every safety, verification
or validation procedures because the intervals
are conservative. The major inconvenience is
that intervals are sometimes too pessimistic.
Otherwise, it is conceivable that a measure
can be associated to guaranteed bounds, an
interval, and also a confidence level coming
from past observations.

A novel contractor is proposed to filter an
interval following a confidence level given on
the associated quantity. This confidence level
is an input of the contractor, the “new” infor-
mation, while the probability distribution of
the considered variable is a characteristic of
the associated random variable.

Combining intervals and a probability has
been already proposed in numerous papers us-
ing techniques such as p-boxes [8], fuzzy sets
[4], box-particles [1] and potential cloud [7].

We are particularly interested in Ordinary
Differential Equations (ODEs) and validated
methods to compute their reachable sets via
validated simulation [6, 3]. In the case of Ini-
tial Value Problems (IVPs) with ODEs, the

initial state is primordial. An uncertain initial

*Corresponding author.
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state is generally bounded in a box. As exper-
imentation, we propose to consider in addition
to this initial box some confidence levels, and
we apply the presented approach.
us to describe the reachable set by a cloud.
This richer result can then be used in different
control problems, parameter synthesis, verifi-
cation, etc.

It allows

Preliminaries

When focusing on symmetric distributions
such as the normal distribution, one can de-
fine:

Confidence interval is a set S for which
the probability of the given random vari-
able to be in this set is equal to the given
probability P.

Probability density function is most
commonly associated with absolutely
continuous univariate distributions. A
random variable X has density fx ,
where fx is a non-negative Lebesgue-
integrable function, if:

b
P=Prla<X <y :/ Fx (@) da.

Confidence level (e.g. CL = 95%) allows
to define the corresponding confidence in-
terval (e.g. Cgsy). This interval can be
obtained by observation (statistical ap-
proach) or with the help of a known dis-
tribution (probability approach). A new
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measure & coming from the (same) exper-
iment will be in the associated confidence
interval such that:

Z € Cos9,  95% of the time.

Confidence-based Contractor

We propose the following confidence-based
contractor:

Cbe([z]| fx,cc): IR — IR

[z] = 2] N ]y]

with [y] the confidence interval defined such
that

Prlre [yl = [ frle)de = e
[y]

cc  being the

(0 < ¢ < 1). For example, one can

use the parameter assignment cc = 0.68 for a

confidence level of 68%.

Figure 1 illustrates the effect of the
confidence-based contractor applied to the fol-
lowing example. Let X be a random variable
with a normal distribution, such that

confidence coefficient

1 _ (o—w)?
€ 202
Vo2

with = 1.0 and ¢ = 1.0. The quantity X
is observed and one measure is obtained: [z] =
[0.7,2.1]. A confidence level of 68.27% is given
on X, that is to say that we are confident on
the accuracy of the observations, so X stays
close to its mean. Our method computes the
contraction such that:

fx(@lp,0) =

Che([0.7,2.1] | fx,0.6827) =[0.7,2.1] N[0, 2]
=[0.7,2.0]

So upper bound is reduced with respect to the
confidence level. The pessimism induced by
interval approach is then limited.

Two special cases can be described:

e V[x], Cbe([z]|fx,0) = () (annihilating ele-
ment)

X2l 1) —

68.27%

[z]

([2],0.68.
—

0.0%

4 3 2 - 0071 221 3 4
Figure 1: Illustration of confidence-based con-

traction.

° V[m],)C’bc([meX,l) = [z] (identity ele-
ment

For two different confidence coefficients ce;
and cco such that cc; < ceo, the following or-
der holds:

V[z], Cbe([x]| fx, cc1) C Che([x]|fx, cc2)

The contractor Cbc can be composed with
other contractors or with itself.

The confidence-based contractor presented
in this paper needs the computation of the
confidence interval associated to a given con-
fidence level. Three cases can be detailed:

Case 1: a well known probability distribu-
tion and a particular confidence level with
known confidence interval. For example,
a normal distribution with a 95% con-
fidence level gives a confidence interval
[ — 20, p+ 20].

Case 2: a probability distribution with a
known inverse function, such as the in-
verse of error function for Gaussian den-
sity function (i.e. erf ).

Case 3: the general case without any par-
ticular value. For this case, a predictor-
corrector algorithm exploiting the sym-
metry of the distribution is designed.

70



Book of Abstracts - 12% Summer Workshop on Interval methods, Palaiseau, France, July 23-26, 2019

Reachability and Potential

Clouds

Computing the reachable set of an initial value
problem defined as follows:

{y<t> = g(t,y(t))
y(0) € [yo] € R™.

can be performed with validated simulation
tools. It provides a tube enclosing y(t; [yo])
for t € [0,T).
presented here can be used to filter the ini-
tial states w.r.t. different confidence levels.

(1)

The confidence contractor

The contraction can be propagated along the
tube|2]| to build a potential cloud on the final
state. This approach is useful in the case of
differential constraint while a constraint can
be verified for some confidence levels but not
for the global intial set (y(0) € [0,2]). An ex-
ample is given in Fig. 2. With a confidence
level of 50% on initial states, the constraint
[y(5; [yo])] C [1.5,1.6] is verified.

LI\DbLDPAL\)CQJ>

1 2 3 4

Figure 2: Validated trajectories for 60% (in
grey waves) and for 50% (in light grey) confi-
dence contraction.

Conclusion

A novel interval contractor based on the confi-
dence assigned to a random variable was pro-
posed. It makes possible to consider at the
same time an interval in which the quantity
is guaranteed to be, and a confidence level to
reduce the pessimism induced by interval ap-
proach. As application, we proposed to com-
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pute the reachable set of an ordinary differ-
ential equation under the form of a potential
cloud, with respect to confidence levels on ini-
tial value.
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Introduction

Small unmanned aerial vehicles (UAVs), are
currently used by firefighters teams for search
and rescue operations, leveraging the use of
thermal imaging and zoom cameras for find-
ing and identifying lost people. The victim is
detected and tracked in the image, but the res-
cue team on the ground needs georeferenced
coordinates to intervene. The classical opera-
tional way is to describe the victims position
relative to surrounding landmarks, and to fly
the drone above the victim to take down its
geographical coordinates (latitude and longi-
tude).

UAVs are equipped with GPS and inertial
navigation systems, which enables to know
their position and orientation in a geograph-
Assuming that the
onboard camera calibration parameters are
known, it is possible to cast each image mea-
surement into a ray in the real world. Locat-
ing a victim can thus be done either by inter-
secting the rays obtained from two different
views, or by intersecting the ray from a single
observation with the ground surface obtained
from a digital elevation model (DEM).

Interval methods have successfully been
used for vision-based localization [2]| or recon-
struction [3], and also for DEM-aided posi-
tioning [1]. Assuming uncertain camera cal-
ibration and drone pose (position and orien-
tation), this work aims to compute a bounding

ical reference frame.

*Corresponding author. vincent.drevelle@irisa.fr
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Figure 1: Pinhole camera model

domain of the possible position of a victim lo-
calized in the drone image. Localization from
a single measurement is enabled by using a
DEM, whose accuracy is also taken into ac-
count.

Camera measurement

Image observations are described by the pin-
hole camera model (Fig. 1). A point in the im-
age plane corresponds to a ray in the world.
The camera ray uncertainty can be divided
into two components: origin and direction.

A first source of ray direction error is ex-
pressed in the camera image plane (in pix-
els). It is related to pointing/tracking accu-
racy. The camera intrinsic parameters ma-
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trix K (obtained from calibration) enables
to relate the measured image plane coordi-
nates £ = (u,v,1)” to the ray coordinates
x = (x,9,1)7 in the normalized space:

pe 0 wp
Tr = K_153, K=10 Dy Vo
0O 0 1

The second source of ray direction error is
the camera orientation 9q in the global frame.
The pitch and roll components of the error are
generally small (a few tenths of a degree if the
camera gimbal is well calibrated and the drone
is not accelerating). The yaw component can
be subject to larger errors (in the order of a
few degrees), since it is estimated by a mag-
netic compass onboard the drone.

The ray origin corresponds to the camera
position p, measured by the GPS of the UAV.
The width of the position error domain can
vary from several meters if using standalone
GPS, to tenths of centimeters if using differ-
ential techniques (DGPS, RTK).

The constraint from a single image obser-
vation defines a domain corresponding to the
“uncertain direction ray” (cone) originating
from the camera center, and dilated by the
uncertainty box of the GPS position. The set
of 3-D world points “X compatible with the
image observation is given by:

Scamera - {wX | z=KII cTw(pr cq) an
z € ([u], V)T, P € [P, q <[4}

where “T, is the rigid transform from the
world reference frame to the camera frame,
and IT is the perspective projection. The in-
tervals [u], [v] represent bounded-error mea-
surements in the image plane. The boxes [P]
and [9q] are respectively the position and ori-
entation uncertainty domains of the camera.

Digital elevation model

The digital elevation model provides a useful
additional constraint for locating people, as-
suming they are on the ground. A DEM is

D

DEM

vol

Figure 2: “Thick DEM” construction

classically a regular grid of altitudes. The ac-
curacy of the terrain model has to be taken
into account, since it can greatly vary depend-
ing on the data source. Particularly, DEM
precision tends to be worse in mountain ar-
eas, which is where most of the SAR opera-
tions occur. The DEM precision is described
by two components: altimetric accuracy and
planimetric accuracy.

From the ground surface defined by the
DEM mesh, we define a “thick DEM” as the
domain of the possible locations of the ground
surface, taking accuracy figures into account.
Thickening the DEM is done in two steps
(Fig. 2). Firstly, the punctual altitude mea-
surements are converted to intervals accord-
ingly to altimetric accuracy. This leads to
a first volume DEM,. Then, we compute
the Minkowski sum of the obtained domain
DEM, with a square [fe;; +e,; 0] represent-
ing the planimetric accuracy, to obtain the fi-
nal “thick DEM” DEM,;.

Victim localization

Assuming bounded errors, the DEM and the
image tracking measurements define sets that
are guaranteed to contain the victim’s posi-
tion. A bounding domain of the victim’s posi-
tion can thus be obtained by intersecting the
“thick DEM” with the “uncertain rays” corre-
sponding to each visual observation.
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Introduction

The omni-present availability of sensor-rich
smartphones along with the fact that people
spend 80-90% of their time in indoor environ-
ments has recently boosted an interest around
the so called Internet-based Indoor Navigation
(IIN) [12]. These comprise of indoor mod-
els, such as floor-maps and points-of-interest,
along with Internet of Things (IoT)-based raw
data, such as wireless, light and magnetic sig-
nals, used to localize and track mobile users
and targets.

There is a large variety of localisation meth-
ods that exhibit diverse quality performance
levels regarding precision, accuracy, cost, re-
liability, scalability, energy efficiency and ro-
bustness [1, 9]. One reason behind low per-
formance usually observed in localization ac-
curacy or robustness is the noisy nature of
the ToT raw data used. For instance, the
WiFi received signal strength (RSS), which
is most commonly used by indoor localisa-
tion techniques, is in fact susceptible to mul-
tipath effects and interference, hence shows
high variability over time. These variations
may naturally introduce errors and jolts in re-
constructed locations. To smoothen the loca-
tion estimates and improve consistency, state-
of-the-art localisation techniques work either
with averaged signal data, or rely on more ad-

*Corresponding author.
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vanced probabilistic or Bayesian approaches
[6, 11].

Other approaches use as well hybrid ap-
proaches combining RSSi-fingerprinting with
inertial tracking systems as in [7] where the
WiFi-based and the IMU-based location esti-
mates, along with the associated uncertainties
are provided as inputs to a data fusion mod-
ule that implements the hybridization scheme
by means of a particle filter. In practice how-
ever, the true probability distribution to use
as Likelihood or a priori in the Bayesian meth-
ods are often unknown hence need be approx-
imated using Gauss or uniform distributions.
It is therefore appealing to consider an alter-
native description of the errors and distur-
bances acting on the measurements.

In this note we will report on a preliminary
investigation on alternative methods to deal
with the uncertainty in the measured signals
by working directly with interval data, i.e.
data ranges or data sets computed from the
raw data with no assumption of the probabil-
ity distribution within the interval. We will
discuss a new method for IIN based on inter-
val fingerprinting [10].

Interval fingerprinting

In this section, we discuss ways to ex-
ploit the interval measurements data in Wi-
Fi Radiomap-based indoor localization tech-
niques. We focus on techniques such as the
ones implemented in Anyplace software [12].

Anyplace uses Wi-Fi Radiomap-based in-
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door localization, which stores radio signals
from Wi-Fi APs in a database at a high den-
sity. The localization subsystem of Anyplace
utilizes the following routine:

In an offline phase, a logging application
records the so called Wi-Fi fingerprints, which
comprise of Received Signal Strength (RSS) in-
dicators of Wi-Fi Access Points (APs) at cer-
tain locations (z,y) pin-pointed on a building
floor map (e.g., every few meters).

Subsequently, in a second offline phase, the
Wi-Fi fingerprints are joint into a N x M ma-
trix, coined the Wi-Fi RadioMap, where N is
the number of unique (x,y) fingerprints and
M the total number of APs.

Finally, in the online phase, a user can com-
pare its currently observed RSS fingerprint
against the RadioMap in order to find the
best match, using known algorithms such as
K-nearest neighbour (KNN) or weighted KNN
(WKNN) [6].

Contrariwise to standard approaches, we
further assume that at each unique location
[, 1l =1,..,N, the range of variation of the
signal intensity is captured, e.g. by sampling
data during short time windows. The Ra-
dioMap (RM) now contains interval finger-
print [U;] measured at location I. The ac-
tual coordinates of location [ may also be sub-
ject to bounded uncertainty, i.e. p; € [pj] =
([z1], [w1])- The thus obtained interval-RM is
stored in a database, where each entry T; has
the form

T, = ([pil; [@)) (1)

Finally, the observed RSS fingerprint during
online phase is taken as an interval vector [,].

Classification with interval data

Since both the radiomap data and the signal
measured by the mobile unit are interval data,
we need to extend the WKNN approach to
measure dissimilarities between interval vec-
tors.

This idea is not new. A KNN classification
method using interval data is proposed in [§],

where the method mainly relies on identifying
possible and necessary neighbours using the
partial orders induced by some distance met-
rics computed with intervals. By construc-
tion, the method yields ambiguous decisions.

To the contrary, other authors addressed
the issue using total orders for clustering in-
terval data in [4, 2] and also in the frame-
work of fuzzy sets in [3|. In these works, the
distance metric used for comparing two inter-
val vectors was the Hausdorff distance, asso-
ciated with the Chebyshev metric as it seems
explicit formulas were readily available for on-
line computation. However, when other met-
rics were used, the distance used was not the
most appropriate to interval data. The reason
it seems, is that the authors of these works did
not find explicit formulas for computing the
Hausdorff distance associated with the other
metrics.

Actually, Jahn [5] gives explicit formu-
las that allow online computation of the
Hausdorff distance h, associated with the
Minkowski norms (2)

1/p
dp<x,y>=<21xi—yi\p) o ©

i
Classical WKNN can then be used to estimate
the location of the mobile unit using the k
nearest neighbours
) = iz [P/
1=
Yy 1/d;

where the distance are given by

di = hp([ﬁl]v [Uo])'

: 3)

(4)

Concluding remarks

The preliminary evaluation of our new method
on an actual interval radio map containing N
= 52 interval fingerprints obtained at posi-
tions covered by M = 206 unique AP, shows
that first, it can work directly with interval
data, and second, the estimates it provides are
smoother and more consistent than the ones
provided by state-of-the-art methods.
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Introduction

We present a reliable method to verify the ex-
istence of loops along the uncertain trajectory
of a robot, based on proprioceptive measure-
ments only [1], within a bounded-error con-
text.

The loop closure detection is one of the
key points in Simultaneous Localization And
Mapping (SLAM) methods, especially in ho-
mogeneous environments with difficult scenes
recognitions.

The approach we propose [3] is fast, reli-
able and could be coupled with conventional
SLAM algorithms to reliably reduce their
computing burden, thus improving the local-
ization and mapping processes in the most
challenging environments such as unexplored
underwater extents.

Loops

An example of loop is given in Figure 1, with
a mobile robot that came back at time ¢9 to a
previous position reached at ¢;. In this work,
for a given trajectory, a loop is defined tem-
porally as a 2d vector t = (¢1,t2)T such that
f(t) = 0 with

£(t) = / * (),

t1
a function describing robot’s move from t; to
t, based on its absolute velocities v(t) € R2.

*Corresponding author.
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Figure 1: An underwater robot exploring its
environment, before and after performing a
loop. The robot trajectory is projected in blue
on the sea-floor.

Detection wvs. verification

A distinction has to be made between the de-
tection and the verification of a loop t. Con-
sidering a set of feasible trajectories, some of
them may cross themselves at some point; this
will lead to a detection. In addition, when
we verify that all the feasible trajectories are
looped, then we can speak about a loop proof
since a loop occurs whatever the considered
uncertainties coming from the sensors. Fig-
ure 2 provides an illustration of this distinc-
tion.

In a reliable context, any feasible trajectory
has to be considered, based on the uncertain-
ties coming from the measurements of v(t).
Tubes are used for this purpose.

The set-membership method we propose
stands on tubes [x](-), see Figure 3, that are
intervals of trajectories x~(+) and x*(-) such
that x~(t) < x*(¢) Vt. Most of the classical
mathematics operations we know on intervals
can be extended to tubes. In this work, in-
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Detectable
loop

Detectable and
verifiable loop

D1

Figure 2: Only one loop can be wverified in this set of trajectories, while at least two feasible
loops are detected. Indeed, there exist trajectories that loop only once.

[4]

I\ A,
U Y

Figure 3: A one-dimensional tube enclosing
an uncertain trajectory.

z*(t)

tegral computations of tubes will allow to ap-
proximate all feasible loops t: so-called loop
sets denoted by T. From tubes, we can com-
pute reliable inclusion functions [f] of f. Then:

T={t]0e[f](t)}.

Formally, we want to verify that Vf &
[f], 3t € T such that f(t) = 0, which is equiva-
lent to verifying a zero of an unknown function

felf]onT.

Topological degree

For this zero verification, we employ the no-
tion of topological degree that originates in the

field of differential topology. An algorithm ex-
ists [2] to verify a zero of an uncertain function
f : R? = R? known to belong to an inclusion
function [f] : IR? — IR2.

We will show its use as a powerful veri-
fication tool for proving robot loops. This
will be demonstrated on actual datasets from
real missions involving autonomous underwa-
ter vehicles at sea.
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Introduction

In this talk we are interested in tracking the
trajectory of differential systems when the
system is time continuous. Its implementa-
tion can be greatly simplified when the sys-
tem checks the flatness property. The pro-
posed method then makes use of non-linear
model-based predictive control [1] (a control-
law strategy to direct the state of a cyber-
physical system along a given trajectory pre-
dict). BoxRRT [6] is an algorithm based on
RRT (Rapidly exploring Random Tree) Algo-
rithm combined with interval analysis tools
(e.g., guaranteed numerical integration). It
computes an outer approximation of the states
at each time interval k. It takes into account
the model of the studied system and a map of
static obstacles.

NMPC Among the control methods capa-
ble of tracking a reference trajectory, Nonlin-
ear Model Predictive Control (NMPC) is well-
adapted, especially in the presence of con-
straints on state and/or input variables [1].
The aim of NMPC is to determine a sequence
of controls by solving a constrained optimiza-
tion problem at time k£ over a prediction hori-
Zon ny.

Differential flatness The idea of differen-
tial flatness was first introduced by Fliess et
al. in 1995 [2]. A system is differentially flat

*Corresponding author.
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if there exists a set of independent variables
(equal in number to the dimension of inputs)
referred to as the flat output such that all
states and inputs of the system can be ex-
pressed in terms of this flat output and a finite
number of its successive time derivative (resp.
advances) for continuous-time (resp. discrete-
time, see [4]) systems.

We consider the class of non-linear contin-
uous systems described by:

z = f(x,u) (1)
y =h(z)
where z € R" , u € R™ y € RP are respec-
tively the state, the input and the output of
the system. The functions f : R™ x R" — R"
and h : R™ +— RP are nonlinear vector func-
tions.

The system is said differentially flat if there
exist a particular output (named flat output)
z € R™ which is a projection on m coordi-
nates of the state x such that the state and
the output of the system can be described us-
ing z and a particular number of its successive
time derivatives:

z = (p(xau,'d,....’um)

T = SOO(Z,Z", ..... 7,2(7"))

u = p1(2, 2, ., 200HD) (2)
Sb = f(SOOa 901)

with r corresponding to the relative degree of
the system. Then, the knowledge of the value
of z and its successive time derivatives over
time allows to characterize the state and the
output of the system.

In [5], the computation of a guaranteed in-
ner approximation of the set of the admissi-
ble controls using the flatness and NMPC has
been addressed in the case of discrete time sys-
tems. The goal of the presentation is to ex-
tend this result in the case of continuous time
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system.

The method

Thanks to boxRRT, we are able to get a set of
states values for which the system is guaran-
teed to reach a defined goal without colliding
with static obstacles. When the system is flat,
this result can be used to produce a set of val-
ues for the flat output and its time derivative
and then allow to provide a set of admissible
value for the input of the system. Indeed, if we
consider u(t) as piece-wise constant, we have

[2k] = f(lwk], ur)
EANE T PARTSNTA

Using Eq. (2), we are then able to produce
a set of controls that can be applied at time k.
A particular control is then applied to the sys-
tem (the midpoint of the characterized input
set for instance).

Experiment

The method is illustrated using the Dubin’s
car model (see [3|) which is given by:

T = wucosf
y = wusinf (3)
6 = v

In [3], it has already been shown that this sys-
tem is flat with the flat output z = (z,y) and

u=i? + 42 (4)

jt — iy
V= Erge )
All the system variables x, y, 6, u, v are thus
expressed as function of x,y, &, vy, Z, 4. Using
boxRRT, we are able to provide a set of tra-
jectories avoiding any obstacles and reaching
a given goal (see Figure 1). This result is
then used to define a control synthesis using

NMPC.

Figure 1: Example of result (in the phase
space) of the boxRRT algorithm (red: ob-
stacles; blue: goal; green: candidates paths;
black: solution).
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Introduction

Optimal control of aerospace systems is per-
formed by modelling the considered system
by dynamics depending on multiple uncertain
parameters (for example, aecrodynamic coeffi-
cients and maximal thrust). Usually, the op-
timal control problem is solved for the nomi-
nal values of these parameters and the robust-
ness of the solution is demonstrated by dis-
persing the parameters around nominal values
with Monte Carlo simulations. In addition to
parameter uncertainties, the problem-solving
method often introduces numerical approxi-
mation (for example the numerical solver of
the ordinary differential equation represent-
ing the dynamics of the system or the opti-
mization algorithm solving the optimal con-
trol problem).

Interval Arithmetics has shown its ability
to address several control problems, providing
validated solutions while dealing with method
uncertainties (numerical approximations) as
well as with model uncertainties (unknown pa-
rameters). The Pontryagin Maximum Prin-
ciple [3] (PMP) provides necessary optimal-
ity conditions for the resolution of optimal
control problems by transforming an optimal

*Corresponding author.
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control problem into a zero-finding problem :
the dynamics of the system is extended with
a co-state and necessary conditions are given
by the PMP on that co-state, and the initial
value of the co-state vector is the unknown to
be found by the zero-finding algorithm. This
method has proven its efficiency and its pre-
cision compared to direct methods [3], but its
convergence depends strongly on its initial-
ization and a prior knowledge of the solution
structure is needed.

Our goal is to address the return version
of the Goddard problem, which consists in
performing the landing of the first stage of
a rocket while minimizing its fuel consump-
tion, combining interval arithmetics and the
necessary optimality conditions given by the
application of the PMP. Although this goal
has not been reached yet, this paper presents
preliminaries results on simplified problems,
exposes the challenges encountered and sug-
gests further developments. The optimal re-
entry trajectory for the Goddard problem is
presented in Figure 1 with the ballistic phases
in blue, and in red the first boost for the in-
version of the speed vector, the intermediate
boost for the dynamic pressure constraint and
the landing boost. The evolution of the dis-
persions along the complete trajectory (launch
and landing) of a rocket are described in [1].

As a first step, a very simplified version
of the Goddard problem is studied, namely
a double integrator where [k] = [k, k] is an
interval parameter and wu is the control in-
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altitude

H
range

Figure 1: Optimal trajectory for the re-entry
Goddard problem

put. This double integrator fits in with a
Goddard problem without gravity and aero-
dynamic forces, and with a constant mass.
The interval parameter [k] represents the un-
certainty on the maximal thrust force. Hence,
the optimal control problem is

T
min/ |u|dt,
0

Two ways of combining interval arithmetics
with the PMP are investigated : an open loop
approach providing an enclosure on the sys-
tem trajectory which can be used to assess
robustness (regarding the interval parameter
[k]), and a closed loop approach providing a
closer enclosure of the optimal trajectories and
can be used to initialize a non-interval algo-
rithm.

Once the double integrator optimal control
problem is solved, multiple approaches such
as validated continuation methods are consid-
ered to solve the Goddard problem using this
simplified version.

r=uv,0 = [k]u,

r(0) = 0,v(0) =0,
r(T) = rp,v(T) is free,
T is fixed.

Open-loop approach

In this approach, the goal is to find the small-
est initial co-state interval that contains every

admissible co-state by combining numerical
integration tools such as DynIbex! [2] and an
algorithm to solve the zero-finding problem.
Many algorithms are considered, for example
Krawczyk method, forward-backward opera-
tors and branch algorithms. The enclosure of
the solution of the zero-finding problem pro-
vides a validated initialization for the co-state
vector. Issues like discontinuous control input,
control saturation, pure state constraints and
mixed constraints are to be studied in order to
solve a practical optimal control problem like
the Goddard problem.

Closed-loop approach

In

this approach, dynamic programming is

used to find a finer enclosure of the optimal

trajectories :

if the system measures its in-

terval state vector at a certain time, a new
optimal control problem is solved from this
interval, providing a better enclosure of the
solution. Due to its algorithmic cost, this ap-
proach is irrelevant for solving practical cases
online, but it can improve the enclosure of the
solution when it is applied offline and there-
fore provides useful information for the online
guidance algorithm.
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