
Interval-Based Simulation of Zélus IVPs Using DynIbex

Jason Brown1 and François Pessaux∗1

1U2IS, ENSTA Paris, Institut Polytechnique de Paris, 828 boulevard des Maréchaux,
91120 Palaiseau, France

Keywords: DynIbex, Zélus, Compilation, Hy-
brid System, Interval, Guaranteed Integra-
tion, Simulation

Introduction

Hybrid systems are commonly defined as dy-
namical systems mixing discrete and continu-
ous times. They are widely present in control
command systems where a continuous physi-
cal process is controlled by software compo-
nents which run at discrete instants. One
of the verification techniques is to simulate
the global system. In such a simulation pro-
cess, the continuous physical process is mod-
eled as differential equations whose solutions
are approximated by dedicated integration al-
gorithms. The discrete processing is the soft-
ware components. Both parts of the system
have to interact, allowing the discrete process
to react to events of the continuous one.

Simulations can be very dependent on the
initial conditions of the system. Small varia-
tions may have important impacts. Moreover,
the initial conditions may not always be accu-
rately known. A solution to address these un-
certainties is to compute using intervals, hence
to rely on interval-based guaranteed integra-
tion tools [2, 6].

Tools and Domain Specific Languages ex-
ist to ease the modeling, development and
verification of hybrid systems (Modelica,
Simulink/Stateflow, LabVIEW, Zélus
and others [4]). These languages provide nu-
merous advantages compared to a manual im-
plementation requiring to explicitly bind the
code of the software components with the run-
time/library of simulation. They often pro-

∗Corresponding author.

pose high-level constructs (automata, differ-
ential equations, guards) with dedicated static
verifications (typechecking, initialization anal-
ysis, scheduling, causality analysis) and com-
pile the hybrid model to low-level code (C,
C++) to produce an executable simulation.

This work proposes to bind the flexibility
of a hybrid programming language, Zélus[3],
with the safety of interval-based guaranteed
integration using DynIbex[1, 5]. Zélus natively
generates imperative OCaml code linked with
a point-wise simulation runtime. DynIbex is a
plug-in of the C++ Ibex library, bringing var-
ious validated numerical integration methods
to solve Initial Value Problems (IVPs). We
do not address the compilation of arbitrary
Zélus programs toward DynIbex. We present
the compilation scheme for an IVP described
in a subset of Zélus to a C++ simulation code
using DynIbex.

1 IVPs in Zélus

An IVP in DynIbex is represented by a vector-
valued ordinary differential equation (ODE)
with initial conditions whereas an IVP in Zélus
is represented by a system of coupled equa-
tions. Compilation from Zélus to DynIbex
therefore requires a transformation between
these representations.

The model of a simple harmonic oscilla-
tor with dampening described by the equa-
tion ẍ + k2 ẋ + k1 x = 0 with initial values
x(0) = 1, ẋ(0) = 0 can be written in Zélus
as :

l e t hybrid shm_decay (x0 , x ’ 0 , k1 , k2) = x
where rec der x = x ’ i n i t x0
and der x ’ = − . k1 ∗ . x − . k2 ∗ . x ’ i n i t

x ’ 0

l e t hybrid main () = x where
x = shm_decay (1 . 0 , 0 . 0 , 4 . 0 , 0 . 4)

where der x represents ẋ and der x’ is
ẍ. The node main instantiates the node
shm_decay with specific initial values and k1
and k2.

2 Compiling the IVP

Compiling the Zélus code requires two steps.
First the hierarchy of nodes must be flattened,
harvesting all the differential equations. Dur-
ing this process, each node instantiation ex-
pression is replaced by the body of the node
where the occurrences of its parameters are
replaced by the effective expressions provided
at the instantiation point. This implies a re-
cursive inlining mechanism which terminates
since Zélus forbids recursive nodes.

Once the intermediate representation of the
flattened system is obtained, the multiple
equations have to be aggregated into a unique
vector-valued function to finally generate the
C++ code. Each differential equation cor-
responds to one dimension of the DynIbex
Function data structure. Initial conditions
are also transformed in a vector-valued struc-
ture. During this process, Zélus expressions
are compiled to C++ expressions. Since nodes
are flattened, leading to a list of equations,
this process mostly consists of a translation of
arithmetic expressions into C++, mapping the
identifiers to the appropriate vector compo-
nent, and converting real constants into trivial
intervals.

We extended the Zélus compiler to imple-
ment the described compilation process. This
new backend operates on the intermediate rep-
resentation obtained after type, causality and
initialization analyses and does not interfere
with the standard compilation. The code gen-
erated for the example given at the beginning
of this section is shown in the following listing.

#define T0 (0 .000000)
#define TEND (6 .000000)
int main () {

const int dim = 2 ;

Var iab le y (dim) ;
In t e rva lVec to r y i n i t (dim) ;
Function ydot =

Function
(y ,
Return

(y [1] ,
((− I n t e r v a l (4 . 000000)) ∗ y [0]) −
(I n t e r v a l (0 . 400000) ∗ y [1]))

) ;
y i n i t [0] = I n t e r v a l (1 . 000000) ;
y i n i t [1] = I n t e r v a l (0 . 000000) ;
ivp_ode problem = ivp_ode (ydot ,T0 , y i n i t)

;
s imu la t i on simu =

s imu la t i on (&problem ,TEND,GL4, 1 e−7) ;
simu . run_simulation () ;
simu . export_y0 (" export ") ;
return 0 ;

}

In this generated code, the size of the IVP
is 2 since we had 2 equations. The interval
y stores the continuous state of the system.
The vector yinit contains the initial values.
Each equation is translated into an argument
of the Return constructor. We can see that
the compilation mapped the x’ of the Zélus
program to the dimension 1 of the vector-
based representation, and x to the dimension
0. It is possible to recognize, in the Return
clause, the translation of -.k1 *. x -. k2
*. x’ where k1 has been properly instanti-
ated by 4.0 and k2 by 0.4.

3 Experimental Results

The first experiment was to simulate the sys-
tem with Zélus and with our generated code,
then to compare the results. In the figure 1,
the Zélus native simulation is represented by
the red line and the simulation obtained using
the intervals is shown by the green boxes.

Both simulations behave consistently. In
particular, the results obtained with the stan-
dard integration runtime of Zélus always re-
main inside the boxes obtained using the in-
terval mechanism. This suggests that the na-
tive integration runtime of Zélus is precise
enough in this example to avoid inaccuracies
that could be caused by float rounding errors.

Although there is not yet syntax extension
of Zélus in the current implementation to spec-

Figure 1: Simulations with/without intervals

ify interval values, it is possible to add un-
certainty on the initial value of der x, by
manually changing the value of yinit[0] to
Interval(0.9, 1.0) in the generated C++
code. The simulation obtained after this
change is shown in the figure 2.

Figure 2: Simulation with initial uncertainty
Both simulations continue to behave consis-

tently, and we see more clearly how the uncer-
tainty increases with time.

4 Conclusion

We presented a mechanism to compile IVPs
described in Zélus to C++ code using DynIbex.
This allows the simulation of programs writ-
ten in a high-level programming language with
interval-based validated numerical integration
methods. This work has lead to a real imple-
mentation in the Zélus compiler. Extensions

to handle more complex IVPs and to com-
pile contracts verification on programs are in
progress.

References

[1] J. Alexandre dit Sandretto, A. Chapoutot,
and O. Mullier. The dynibex li-
brary. http://perso.ensta-paristech.
fr/~chapoutot/dynibex/.

[2] O. Bouissou, S. Mimram, and
A. Chapoutot. Hyson: Set-based simula-
tion of hybrid systems. In Proceedings of
the 23rd IEEE International Symposium
on Rapid System Prototyping, RSP 2012,
Tampere, Finland, October 11-12, 2012,
pages 79–85, 2012.

[3] T. Bourke and M. Pouzet. Zélus: A syn-
chronous language with odes. In Pro-
ceedings of the 16th International Confer-
ence on Hybrid Systems: Computation and
Control, HSCC ’13, pages 113–118, New
York, NY, USA, 2013. ACM.

[4] L. P. Carloni, R. Passerone, A. Pinto,
and A. L. Angiovanni-Vincentelli. Lan-
guages and tools for hybrid systems de-
sign. Found. Trends Electron. Des. Au-
tom., 1(1/2):1–193, Jan. 2006.

[5] J. A. dit Sandretto and A. Chapoutot. Val-
idated explicit and implicit Runge–Kutta
methods. Reliable Computing, 22(1):79–
103, Jul 2016.

[6] T. A. Henzinger, B. Horowitz, R. Majum-
dar, and H. Wong-Toi. Beyond hytech:
Hybrid systems analysis using interval nu-
merical methods. In N. Lynch and B. H.
Krogh, editors, Hybrid Systems: Compu-
tation and Control, pages 130–144, Berlin,
Heidelberg, 2000. Springer Berlin Heidel-
berg.

http://perso.ensta-paristech.fr/~chapoutot/dynibex/
http://perso.ensta-paristech.fr/~chapoutot/dynibex/

	IVPs in Zélus
	Compiling the IVP
	Experimental Results
	Conclusion

