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Introduction

State estimation of dynamic systems is com-
monly addressed by modelling the uncer-
tainty as a stochastic variable, usually as-
sumed Gaussian. For linear or non-linear
systems, such problems are solved by using
a classical (KF), an extended (EKF) or an
unscented (UKF) Kalman Filter. For non-
linear systems, particle �lters have been de-
veloped to tackle non-Gaussian noise distri-
butions. However, stochastic representation
of errors is not immune to criticism as the
probability density function is seldom known
a priori. In set-membership estimation, pro-
cess and measurement uncertainties are only
assumed to vary within known bounds which
makes this type of approach very robust to
lack of probabilistic information. Various set
structures have been used to characterize the
variation domain of the system states, given
the model structure and bounds. However,
this results often in a pessimistic estimation,
especially for multi-modal distributions. A
more recent alternative method, �rst intro-
duced by [1] consists in combining the ver-
satility of the particle representation with the
robustness of set-membership method. This
translates in replacing the point particle by a
box which results in reducing signi�cantly the
number of particles and the adverse e�ects of
non-linearity. Box Particle Filter (BPF) esti-
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mators have already been applied in Simulta-
neous Localization and Mapping (SLAM) or
mobile localization [1, 7]. However, the BPF
provides a rather pessimistic solution due to
the fact that the intervals have to be aligned
along the state axis which result in loosing
potential dependencies between the resulting
estimate components. To address this issue,
an improvement of the box description could
be to combine this description with a more
precise set characterization using either ellip-
soidal [2, 4, 5] or polyhedral boundaries [6].
The aim of the present work is to build a new
box particle �lter based partially on polytopic
description.

Problem Statement

Consider the following non linear discrete-
time system:{

xk+1 = f(xk) + wk

yk = h(xk) + vk
, (1)

where xk ∈ Rnx is the state vector, yk ∈ Rny

the measurement vector, f : Rnx → Rnx a
non-linear function and wk, a process noise
vector. We denote by nx, nw, respectively, the
dimensions of the state and process noise vec-
tors. The function h : Rnx → Rny is a non-
linear function and vk a measurement noise
vector. Dimensions of the measurement and
measurement noise vectors are respectively ny

and nv.
Assumption 1. The disturbance terms

wk and vk are assumed to be unknown but
bounded (UBB) noises:

|wk,i| 6 εwk,i, i = 1, . . . , nw ⇐⇒ ‖wk‖
εwk∞ ≤ 1,

(2)



|vk,i| 6 εvk,i, i = 1, . . . , nv ⇐⇒ ‖vk‖
εvk∞ ≤ 1.

(3)
De�nition 1. A real interval, denoted [x],

is de�ned as a closed and connected subset of
R and a box [X] of Rnx as a Cartesian product
of nx intervals: [X] = [x1]×[x2]×. . .×[xnx ] =
×nx

i=1[xi].
De�nition 2. An n-dimensional polyhe-

dron P is de�ned as a set of np vertices Vi, i =
1, . . . , np and nh supporting hyper-plans Hj .
Each of the nh hyper-plans is de�ned by
{x ∈ Rn|aix = bi}, where aTi ∈ Rn and bi ∈
R Therefore, a n-dimensional polyhedron P
supporting nh hyper-plans is de�ned by :

{x ∈ Rn|Ax ≤ b}, (4)

where A ∈ Rnh×n, ai the i-th row of A, b ∈
Rnh and bi the i-th component of b.

Proposed algorithm

The algorithm is based on the BPF algorithm.
The main originality consists in modifying the
update step of the BPF by replacing the mea-
surement boxes by polytopes to improve ac-
curacy.

Initialization

As in the BPF, the initialization consists in
creating Np box particles from the initial
box with minimum intersection and equiva-
lent weights.

Prediction

In this step, each state predicted particle is
computed based on the previous state esti-
mated particle, via a classical interval prop-
agation.

Measurement update

The observation function h is linearized at the
center x̂k of the predicted box:

h(xk) = h(x̂k) + Ck(xk − x̂k) + ok, (5)

where Ck = ∂h(x̂k)
∂x ; ok is the linearization er-

ror. The measurement bounds [mk] are ob-
tained as [ok] + [vk]. For each measurement
yk, two bounding hyperplans are de�ned as
h(x̂k) + Ck(xk − x̂k) = yk + min([mk]) and
h(x̂k) + Ck(xk − x̂k) = yk +max([mk]).

Using the approach described in [6], the
measurement update step consists in comput-
ing the feasible set for each particle by inter-
secting the predicted box particles with the
two half spaces associated with each of the
bounding hyperplans. The volumes of the re-
sulting polytopes are computed as in [3], and
will be used as weight for each polyhedron par-
ticle.

Estimation

At the k-th step, the state is usually ap-
proximated using the weighted particles, as
x̂k =

∑Np

i=1w
i
kx

i
k. In the case of box particles,

so on the BPF, the state is actually computed
as x̂k =

∑Np

i=1w
i
kC

i
k, where C

i
k is the center of

the box particle i. However, in our proposed
�lter, the new estimated state is computed as
the center of the polytope i which is obtained
as Ci

k = 1
np

∑np

j=1Vk,j where Vk,j is the j-th
vertice of the polytope i at time k.
Similarly to the BPF, the associated covari-
ance matrix is given by P̂k =

∑Np

i=1w
i
k(x̂k −

xik)(x̂k − xik)
T .

Resampling

The resampling phase consists in eliminating
polytopes associated with the lowest weights,
and in dividing the polytopes associated with
the highest weights. These weights are ob-
tained by computing the volume of each poly-
tope. After selection of the polytopes to be
kept, each of those is approximated by the
smallest box containing it. Figure 1 illustrates
the measurement update phase. It can be seen
that the polyhedral update (in green) makes
the resulting estimation uncertainty less pes-
simistic than with the classical Box Resam-
pling (in black).



Several examples of non linear model esti-
mation have been tested to evaluate the aver-
age precision improvement resulting from the
use of the new method.
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Figure 1: Illustration of the measurement
update using polyhedrons. Blue: predicted
box. Red: half spaces associated with each of
the bounding hyperplans. Green: set of new
boxes after resampling. Black: set that would
be obtained with classical Box Particle Filter.

Conclusion

In this paper, improvement of box particle �l-
ter based on polytopic measurement updating
is proposed. Di�erent examples of application
have been compared with the BPF and the
results are promising. The estimate is more
precise, especially if all the variables are mea-
sured. However, for now, the computing time
is still uncertain because it depends on the di-
mensions of the state and the measure. Future
work includes analysis of the computation of
the bounds on measurements allowing the best
compromise between reliability and precision.
Evaluation of weights depending not only on
the volume of the resulting polytopes is also
under study.
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