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Figure 1: Polynesian navigation
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Introduction

The Polynesian navigation problem asks to
move from islands to other islands without be-
ing lost. The navigation should be performed
without GPS, compass and clocks. The dif-
ficulty of the navigation is illustrated by Fig-
ure 1: the ocean is huge, the islands are small,
the boats have a dynamic which is more or less
uncertain.

Among the techniques used by Polynesians,
the observation of the stars (see Figure 2) are
useful to get the heading, but also to detect
if the boat is on the route which leads to
the desired island. The approach we will fol-
low to guarantee that we can reach an island
from another island, uses guaranteed integra-
tion [7], tube programming [6], constraint pro-
gramming [8], localization [3], contractors [2]
and interval analysis [5].

∗Corresponding author.

Figure 2: Pair of stars technique: the boat
is on the right route if the bottom star rises
when the right star sets

Formalisation

Given a set of geo-localized islands mi, i ≥ 0,
the ith coastal area is:

Ci = {x | ci (x) ≤ 0} .

A robot has to move in this environment with-
out being lost. Figure 3 represents a set of
4 islands with the associated coastal zones
C1,C2,C3,C4 (painted blue).

We assume that (i) the coastal areas are
small compare to the offshore area, (ii) in the
coastal area, the robot knows its state, (iii)
offshore, the robot is blind and has an open
loop strategy, such as for instance go North
and (iv) the robot is described by blind state
equations{

ẋ = f (x,u) , u (·) ∈ [u] (t)
x (0) = x0

where the input u(t) belongs to the uncer-
tainty box [u] (t).

We define the set flow Φ : R×Rn → P (R)
as:
Φ(t1,x0) = { a|∃u (·) ∈ [u] (t) ,a = x(t1),

ẋ = f(x,u),x (0) = x0 }
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Figure 3: Islands ans coastal zones

Given the set A (for instance a coastal area),
the backward reach set [1] is defined by

Back(A) = { x | ∀ϕ ∈ Φ,
∃t ≥ 0,ϕ(t,x) ∈ A }

Interval analysis is often used to compute
backward reach sets in the case where the
robot is nonlinear [4]. We have

Back(A ∪ B) ⊃ Back(A) ∪ Back(B) .

This is the Archipelago effect which tells us
that finding an Archipelago (A ∪ B) is easier
than finding individual islands.

Moving between coastal zones

Assume that we have m coastal sets
C1,C2, . . . , i ∈ {1, 2, . . . } and open loop con-
trol strategies uj , j ∈ {1, 2, . . . } or equiva-
lently, we have set flows Φj(t,x0). Moreover,
we assume that the control strategy cannot
change offshore. As a consequence, (i) from
C1 we can reach C2 with the jth control strat-
egy if C1 ∩ Back(j,C2) 6= ∅. (ii) From C1 we
can reach C2 with at least one control strat-
egy if C1 ∩

⋃
j Back(j,C2) 6= ∅. (iii) From C1

we can reach C2 ∪ C3 with at least one con-
trol strategy if C1 ∩

⋃
j Back(j,C2 ∪C3) 6= ∅.

Figure 4: Reach an island from another island
using a ’Go-East’ strategy

Figure 5: Reachability graph

Therefore, we define the reachability relation
↪→ as:

• Ca ↪→ Cb if from Ca we can reach Cb with
at least one control strategy j.

• ↪→ is the smallest transitive relation
which satisfies{

∀k ∈ K,Cik ↪→ Cb

∃j,Ca ∩ Back(j,
⋃

k∈KCik) 6= ∅
⇒ Ca ↪→ Cb

Consider for instance, the hyper-graph of Fig-
ure 4 where the relation A j→ B,C means that
from A the robot can reach either B or C using
the jth strategy. For instance, in our graph

C1 ∩ Back(1,C3 ∪ C4) 6= ∅ ⇒ C1
1→ (C3,C4)

Thus, the associated reachability graph
(corresponding to ↪→) is given by Figure 5.

In a similar way, we can also define the for-
ward reach set.

No lost zone

We define the no-lost zone as the set S of all
states that we may visit from a coastal area
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Figure 6: No-lost zone associated with the 5
islands

without being lost with the available control
strategies. Define the index set associated
with the strategy Ij as

Ij = {k|Ck∩Back(j,
⋃
i 6=k

Ci) 6= ∅}.

If we start from Ck,k ∈ Ij , then we will reach
at least another coastal area with the control
strategy j. We have

{
x ∈ Back(j,

⋃
iCi)

x ∈ Forw(j,Ck), k ∈ Ij
⇒ x ∈ S

Thus

S ⊂
⋃
j

⋃
k∈Ij

Forw(j,Ck) ∩ Back(j,
⋃
i

Ci).

This property will allow us to have an in-
ner approximation of the no-lost zone, which
is our main contribution. This is illustrated
by Figure 6 with 8 strategies: North, East,
South, West, North-East, East-South, South-
West, West-North.
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