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Introduction

There are di�erent reasons for the occurrence
of uncertainty. It can appear due to model
simpli�cations, approximation of nonlineari-
ties, imprecise parameter knowledge and/or
order reduction as well as physical and nu-
merical restrictions of the system itself. Un-
certainty caused by measurement noise and
sensor inaccuracies are further examples. In
any case, uncertainties can be treated ei-
ther stochastically or as bounded quantities
in terms of worst case scenarios, where the
lower and upper bounds are summarized in an
interval. Hence, interval arithmetic is a com-
mon tool, see [3]. Unfortunately, its use tends
to lead to overestimation due to the so-called
wrapping e�ect. To avoid this, cooperativity
has already been investigated in several pa-
pers, [2, 4, 5]. A system is cooperative, if for
an autonomous dynamic system

ẋ(t) = f (x(t)) , x ∈ Rn , (1)

all o�-diagonal elements Ji,j , i, j ∈ {1, . . . , n},
i 6= j, of the corresponding Jacobian

J =
∂f (x)

∂x
(2)

are strictly non-negative according to

Ji,j ≥ 0 , i, j ∈ {1, . . . , n} , i 6= j . (3)
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This means, that state trajectories x(t) start-
ing in the positive orthant Rn

+ = {x ∈ Rn |
xi ≥ 0, ∀i ∈ {1, . . . , n}} are guaranteed to stay
in this positive orthant for all t ≥ 0 because
ẋi(t) = fi (x1, . . . , xi−1, 0, xi+1, . . . xn) ≥ 0
holds for all components i ∈ {1, . . . , n} of
the state vector as soon as the state variable
xi reaches the value xi = 0. The advantage
of cooperativity is the simpli�cation of sev-
eral tasks such as the computation of guaran-
teed state enclosures, the design of interval
observers, forecasting worst-case bounds for
selected system outputs in predictive control
and the identi�cation of unknown parameters.

Main Idea

Many system models in biological, chemical,
and medical applications are naturally coop-
erative. However, there is also a great number
of systems (typically from the �elds of electric,
magnetic, and mechanical applications) which
do not show this property if the state equa-
tions are derived using �rst-principle tech-
niques. Hence, it is often desired to transform
such system models into an equivalent coop-
erative form. If a system

ẋ(t) = f (x(t),u(t)) (4)

is linear, it can be given in the state-space
representation

ẋ = A(p) · x + B(p) · u (5)

with the state vector x and the input u consid-
ering parameter uncertainty in the elements of
the system matrix A(p) as well as the input
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matrix B(p). Moreover, most nonlinear sys-
tems can be reformulated into a quasi-linear
state-space representation

ẋ = A(x) · x + B(x) · u , (6)

where the uncertainty lies in the state depen-
dencies due to nonlinear expressions in the
right-hand sides of (4). Both representations
(5) and (6) describe uncertain systems, which
can be transformed into cooperative forms by
means of Eqs. (1)�(3). If the system model is
controllable (or at least stabilizable) and the
desired operating state is set to x = xs = 0
without loss of generality for the steady-state
input u = us = 0, a feedback controller is
introduced in Eqs. (5) and (6) according to
u = −K(p) ·x or u = −K(x) ·x, respectively,
leading to the following state-space represen-
tations:

ẋ = (A(p)−B(p)K(p))·x = AC(p) · x (7)

ẋ = (A(x)−B(x)K(x))·x = AC(x) · x. (8)

For the transformation into an equivalent co-
operative form, we make use of a method de-
veloped in [2] for linear systems with crisp pa-
rameterization. This approach has been ex-
tended to uncertain systems in [5] and gener-
alized in [4] to cover real-life applications in an
e�cient manner. It was shown that one needs
to distinguish between systems with purely
real and conjugate complex eigenvalues. For
the presented paper, we will concentrate on
the former. It was assumed that the uncer-
tain system matrix can be expressed by the
element-wise de�ned inequality

Za −∆ ≤ Z := AC ≤ Za + ∆ , (9)

where ∆ consists of the (symmetric) worst-
case bounds of all entries in [AC]. Note, the
midpoint matrix Za = ZT

a in Eq. (9) is as-
sumed to be symmetric in what follows. A
Metzler matrix R = µEn − Γ is searched
for, which has the same eigenvalues as Za,
with a constant µ ∈ R and a diagonal ma-
trix Γ ∈ Rn×n; En ∈ Rn×n is a matrix with

all elements equal to 1 and Γ = ρIn with
ρ > µ and the identity matrix I of order n.
If eig(R) = eig(Za), according to [2], there
exists an orthogonal matrix S ∈ Rn×n such
that STZS, respectively, is Metzler provided
that µ > n||∆||max, where ||∆||max denotes
the maximum absolute value of ∆. However,
in several practical cases �nding the transfor-
mation matrix S is not trivial. Thus, this ap-
proach was converted into a computationally
feasible optimization problem formulated with
linear matrix inequality (LMI) constraints [1].
This is done with the main goal of a general-
ization to cover both possible uncertainties of
Eqs. (5) and (6). Both types of system models
with time- and state-dependent parameter un-
certainties are investigated for real-life electric
RLC-circuits.
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