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Introduction

Guaranteed characterisation of the set of con-
trollers stabilizing a system is a major prob-
lem in control theory. Interval analysis gives
a tool to solve this problem as described in
[2]. However it is computationally expensive
for high order systems (>7) with a lot of con-
troller gains (>5) or parametric uncertainties.
This work deals with author attempts on al-
ternative approaches to improve this compu-
tation efficiency. Section 2 recalls stability cri-
teria for systems and how they are used by an
interval analysis algorithm in robust control.
Section 3 gives some alternative implementa-
tions of stability criteria. Section 4 suggests a
different algorithm.

Stabilizing Controllers Set
Computation
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Figure 1: Closed-Loop System F

Let G(p) and K(k) be Linear Time Invari-
ant Systems (LTI). G is called the regulated
systems, p are the uncertain parameters of G.
K is called the controller and k are the con-
troller gains. G(p) and K(k) are linked in a
closed-loop system F (p, k) as shown in Fig.

1. F (p, k) is also an LTI system. The prob-
lem stated in this work is to find the set Kstable

stabilizing F for all values of p inside a given
set P.

Given a state-space representation of F ,
(AF (p, k), BF , CF , DF ), An internal stability
criterion for F is given by the Routh-Hurwitz
criterion [2] : Given P (p, k, s) = det(sI −
AF (p, k)) the characteristic polynomial of AF

and ai(p, k) ∈ Rn its coefficients and H the
Hurwitz Matrix given by:

H =


a1 a0 0 0 0 0 0 · · · 0
a3 a2 a1 a0 0 0 0 · · · 0
a5 a4 a3 a2 a1 a0 0 · · · 0
...
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...
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. . .
...

0 0 0 0 0 0 0 · · · an


F is internally stable iff all the minors of H
are strictly negative.

As those minors have an analytic expres-
sion, this criterion is available for a set com-
putation via interval analysis. [2] translates
the stabilizing set finding problem as a con-
straint satisfaction problem (CSP) and pro-
vides an algorithm to solve it by operating
dichotomies on an initial box of values of k.
However the complexity of this algorithm is
exponential with the dimension of the interval
box k and the evaluation pessimism increases
dramatically with the order n of the system
F for a naive implementation of the Routh-
Hurwitz stability criterion.

Alternative Stability Criteria

Following the previous statement, several so-
lutions are explored to control the computa-
tional complexity.



The first improvement is to use the Lienard-
Chipart criterion [4] which is a direct deriva-
tive from the Routh-Hurwitz. However it is
more efficient as it tests only half the minors
of the Hurwitz matrix, giving the opportunity
to not compute the minor with the highest
degree, which suffer the most from evaluation
pessimism. For the same computational com-
plexity, it is possible to deal with systems with
one more order.

The second tested solution is to improve
the Directed Acyclic Graph (DAG) of the sta-
bility criterion expression for a more precise
interval evaluation. For that, the operator
HurwStab([ai]) is created at a low implemen-
tation level for interval computation. This re-
sults in a significant reduction in evaluation
pessimism.

The last one is to test an alternative cri-
terion based on the Argument Principle [5]
formula: given a complex function f and a
complex positively oriented contour

∮
C where

f never equals zero,∮
C

f ′(z)

f(z)
dz = 2πi(Z −Q)

where Z and Q are respectively the number of
zeros and poles of f . The idea is to replace f
by the characteristic polynomial (which does
not have poles) to test if it has roots on the
right half plane which cause instability. It is
possible with a clever contour like on Fig. 2,
with a maximum radius fixed with Gershgorin
circles. It provides an alternative criterion as
long as the algorithm can compute integrals
with interval analysis.

Despite the addition of complexity and
pessimism caused by integral computation,
this alternative criterion seems interesting for
some problems with high order systems.

Alternative Set Computation
Algorithm

Eventually, an alternative algorithm is sug-
gested to compute the stabilizing set. It uses

Figure 2: A Nyquist Contour Γ

Kharitonov theorem [3]. Kharitonov states
that, for a characteristic polynomial with in-
terval coefficients, it is sufficient to test only
four polynomial edges to prove complete sta-
bility of all polynomials in the set.

As far as the author knows, there is no
method to prove complete instability for such
interval polynomials. However, Dabbene [1]
gives a fast randomized algorithm to find
a stable punctual polynomial inside interval
polynomials. A failure of the Dabbene algo-
rithm suggests a complete instability of the
set. For a polynomial order < 14, about 1000
iterations seem to provide a reliable result.

Here, Kharitonov and Dabbene are seen as
operators taking interval polynomial coeffi-
cients and returning a Boolean (Kharitonov
is true if the set is stable, Dabbene is true if it
found a stable point in the set). Based on def-
initions given in previous sections, the author
defines two operators:

- The coefficient operator :

(p, k)→ ai(p, k)

p ∈ P, k ∈ K, ai ∈ Rn (1)

- The Dabbene-Kharitonov (DK)-operator :

[ai]→


true if Kharitonov([ai])
false if ¬Dabbene([ai])
unknown if Dabbene([ai])

(2)
Using those operators, the alternative Set

Computation algorithm steps are as follows:

1. With a given set of values for (p,k) the



coefficient operator provides a set of poly-
nomial coefficients [ai].

2. The DK-operator is used by a paver
to provide the set of stable polynomials
given by their coefficients.

3. Based on the result of 2., a Set Inversion
Algorithm returns the stabilizing con-
troller gains set Kstable.

This algorithm is not guaranteed as the
Dabbene test is not. However still it seems
relevant because a failure of the Dabbene test
is unlikely to occur as it is explained in the
statistical analysis provided in [1]. This al-
gorithm could be efficient insofar as the KD-
operator does not introduce evaluation pes-
simism. It is not the case for the coefficient
operator but its expression is assumed to be
simple regarding Routh-Hurwitz criterion ex-
pression.

A discussion on the complete implementa-
tion of this algorithm will conclude the work.
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