
The MPFI library revisited

Nathalie Revol∗1

1University of Lyon - Inria, France

Keywords: MPFI Library; Arbitrary Pre-
cision Interval Arithmetic; IEEE 1788-2015
Compliance

The IEEE 1788-2015 standard

Interval arithmetic has been defined and used
since the 50s and 60s. However, no common
definition existed for years and it made diffi-
cult to compare different works. In 2008, a
group of interval experts, gathered at a sem-
inar in Dagstuhl, felt that interval arithmetic
was mature enough to undergo a standardiza-
tion effort. This effort led to the IEEE 1788-
2015 standard [2].

It was impossible to define a theory that
encompasses the co-existing theories in use,
such as set theory, Kaucher arithmetic, modal
arithmetic, cset arithmetic. The adopted so-
lution was to provide "hooks" to accomodate
different theories within the standard: each
provided theory is called a flavor. The only
flavor defined in the 2015 version of the stan-
dard is the set-based flavor, from set theory.

Another peculiarity of the IEEE 1788-2015
standard is the handling of exceptions, called
decorations. A decoration is attached to each
interval and gives a summary of what hap-
pened during the computations that resulted
in this interval: was every operation defined
and continuous over its arguments, or sim-
ply defined, or even less, such as in

√
[−2, 1]

where the square root is not defined every-
where over its argument [−2, 1]? Incidentally,
in the set-based flavor,

√
[−2, 1] is computed

as
√
[−2, 1] ∩Dom√ =

√
[0, 1] = [0, 1].

∗Corresponding author.

Libraries compliant with the
IEEE 1788-2015 standard

The development of the standard has been ac-
companied by the development of the C++
libieee1788 library by M. Nehmeier, that
served as a proof-of-concept. Unfortunately,
M. Nehmeier left academia and this library is
no more maintained. Two other libraries have
been developed since then and are compliant
with the standard: JInterval by D. Nadezhin
and S. Zhilin, and the Octave interval pack-
age by O. Heimlich. The JInterval re-
cently and untimely lost its main developer,
D. Nadezhin. O. Heimlich also left academia
but he still develops and maintains the Octave
interval package.

No other library of interval arithmetic has
been developed in compliance with the IEEE
1788-2015 standard, because it is difficult. A
first difficulty is the implementation of the
long list of functions and conversions man-
dated by the standard, with the prescribed ac-
curacy. Another difficulty is the implementa-
tion of the decoration mechanism. On the one
hand, it requires that an extra piece of infor-
mation is attached to each interval, and this
can destroy memory optimizations (padding
etc.). On the other hand, decorations must
be propagated and this implies some more ex-
tra code. These difficulties are less salient for
the MPFI library, introduced below.

The MPFI library

MPFI [3] is a C library for arbitrary precision
interval arithmetic. An interval is represented
by its endpoints, which are arbitrary preci-
sion floating-point numbers provided by the
MPFR library [1]. Every single operation is



as accurate as possible, thanks to the MPFI
library that provides correctly rounded oper-
ations, with directed roundings as needed, for
each endpoint.

MPFR already offers a long list of functions
and conversions between different types and
MPFR floating-point numbers: incorporating
them in MPFI is usually relatively easy, for
most of them, as the bulk of the work has al-
ready been done by MPFR developers. How-
ever, some functions mandated by the stan-
dard, and in particular most of the reverse
functions, useful for constraints solving, are
still missing in MPFI.

As an interval is represented by two arbi-
trary, and thus variable, precision endpoints,
adding a decoration to each interval is not an
issue: padding or cache optimization are not
at stake anyway, as the employed memory is
already (usually) variable and large.

Finally, the mechanism for handling ex-
ceptions in MPFI is very different from the
one adopted in the IEEE 1788-2015 standard:
for instance, for

√
[−2, 1], MPFI returns NaI,

which stands for Not an Interval. The code
of each MPFI operation must be reworked to
handle and propagate decorations.

To sum up, there is some work to be done
to make MPFI compliant with the IEEE 1788-
2015 standard, but this work seems less de-
manding than for libraries based on fixed-
precision floating-point numbers such as IEEE
754-2008 binary32 or binary64. The rela-
tive overhead, both in terms of memory and
of computation time, due to the incorporation
of flavors and decorations, is also less impor-
tant and probably negligible.

Work to be done

The main modifications will take place at two
levels. The first one concerns the data struc-
ture of a MPFI interval.

a) An extra field will be added to indicate
the flavor in use. This is a bit different
(but not incompatible) from the intended

use of a flavor, which is supposed to be set
for a whole block of code rather than for
an individual interval. However, MPFI
will check that the flavors of the operands
and of the result match before performing
the required operation.

b) An extra field, parameterized by the fla-
vor, will be added to store the decoration
attached to the interval.

The second kind of modifications concerns
the code for each operation.

a) A preprocessing will be added to check
the compatibility of the flavors and to
branch to the code corresponding to the
flavor in use.

b) For each branch, a postprocessing will
propagate the decoration.

Lastly, for backward compatibility, a
MPFIoriginal flavor will be added, that will
branch to the original version of MPFI. It will
be the default flavor, so that users can run
their existing codes without any modification
of their behaviour.

References

[1] F. Fousse, G. Hanrot, V. Lefèvre,
P. Pélissier, and P. Zimmermann. MPFR:
A Multiple-precision Binary Floating-
point Library with Correct Rounding.
ACM Transactions on Mathematical Soft-
ware, 33(2):no 13, 2007.

[2] IEEE: Institute of Electrical and Elec-
tronic Engineers. IEEE 1788-2015 Stan-
dard for Interval Arithmetic, 2015.

[3] N. Revol and F. Rouillier. Motivations for
an Arbitrary Precision Interval Arithmetic
and the MPFI Library. Reliable Comput-
ing, 11(4):275–290, 2005.


