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Introduction

For navigation in the absence of GPS, mobile
robots often fuse information from both laser
scanner and camera to take advantage of both
sensor modalities [1]. While the laser scanner
allows to measure accurate distances to the
environment, camera images can be employed
to re-identify salient features over time and
space. However, to fuse data from both sen-
sors, the extrinsic transformation - i.e. the
rotation and translation between the sensor
coordinate systems - has to be known.

Generally, all approaches for the extrinsic
calibration between camera and laser scanner
can be divided into two categories: target-
based (e.g. using a checkerboard) or target-
less (by relying on natural image features).
Since the target-less extrinsic calibration is
usually less accurate due to the problem of ac-
curately identifying the same features in both
laser scan and camera data, we omit it and
focus on the target-based calibration. Unnikr-
ishnan and Hebert employ a checkerboard for
which they extract the plane parameters from
the data of both sensors [2]. Since their ap-
proach requires corresponding plane parame-
ters from at least three different checkerboard
poses, Zhou et al. aim to reduce this num-
ber by incorporating additional features into
their non-linear optimization [3]. Instead of
only extracting the checkerboard’s plane, they
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Figure 1: To find the rigid body transforma-
tion between camera and laser scanner, con-
sisting of the rotation RC

L and the translation
TC

L , we extract plane, line and point features
from the data of both sensors.

also identify the border lines in both the cam-
era image and the laser scan. Consequently,
the authors integrate these line features as ad-
ditional constraints, and can thus reduce the
number of required checkerboard poses while
also increasing the calibration accuracy.

However, both presented approaches ne-
glect the underlying uncertainties and their
accuracies can only be assessed by compar-
ing the resulting transformation to ground
truth information. This poses a problem since
ground truth is generally not available and the
results from Zhou et al. show that the accu-
racy varies significantly with the number and
diversity of chosen checkerboard poses [3].

Furthermore, both approaches assume zero-



mean noise for the sensors. However, prior
to the extrinsic laser-camera calibration, an
intrinsic camera calibration needs to be per-
formed. Here, imperfections leading to biased
intrinsic camera parameters can occur. Sub-
sequently, these parameters are employed to
establish a connection between image pixels
and real world coordinates, resulting in bi-
ased (non-zero-mean) features for the follow-
ing extrinsic calibration. Likewise, the laser
scanner’s distance and angular measurements
can be biased due to an imperfect calibration,
leading to systematic errors for the extracted
plane and line features.

Thus, we propose to assign an unknown
but bounded error to the sensor measurements
and use interval analysis to propagate the er-
ror from input sources to the final calibra-
tion result. On the one hand, this allows us
to model unknown systematic errors for both
sensors. On the other hand, we can immedi-
ately assess the extrinsic calibration accura-
cies by inspecting the corresponding interval
widths. Similar work - although for a differ-
ent application - has been done by Sandretto
et al., who introduce a method to calibrate a
cable-driven robot [4].

Extrinsic Calibration

We extract the same plane and line features
as proposed by Zhou et al. [3], but constrain
the rigid body transformation even further by
computing the checkerboard’s corner points.
Figure 1 shows the general idea. All compu-
tations are performed in a bounded-error con-
text, meaning that we start by modeling the
sensor errors with intervals and extract inter-
val domains for the desired features.

To identify the aforementioned features in
the camera image, we solve the Perspective-n-
Point problem under interval uncertainty [5].
This allows us to establish a connection be-
tween the camera coordinate system and the
checkerboard coordinate system. By taking
advantage of the fact that the dimensions of

the checkerboard are known, we can imme-
diately compute a box enclosing the corner
points and derive the boundary lines as well
as the plane parameters accordingly.

To find the plane parameters in the laser
scan data, we force the corresponding inter-
val boxes on a common plane by employing a
forward-backward contractor in combination
with branching. Subsequently, we find bound-
ary points residing on the checkerboard’s bor-
der and fit a line through them to determine
the boundary lines. Afterwards, a box enclos-
ing the corner points can be computed by in-
tersecting adjacent boundary lines.

In the following, we introduce the variables
required to establish the constraint satisfac-
tion problem (CSP). Generally, a right super-
script C or L indicates that the particular fea-
ture is given in the camera or laser scanner
coordinate system, respectively.

• nL and nC are the unit checkerboard
plane normal vectors.
• dL

i and dC
i are unit direction vectors de-

scribing the same checkerboard boundary
line i ∈ {1, . . . , 4}.
• QL

ij and QC
ik are points on the line i with

j ∈ {1, . . . , Ni} and k ∈ {1, 2}. Ni is
the total number of points on the line i
which we extract from laser scan data. In
contrast, we determine only two points on
every line i for the camera - namely the
two adjacent corner points.
• PL

l are scan points on the checkerboard
with l ∈ {1, . . . , Np}. Np is the total
number of scan points on the plane.
• dC is the distance from the camera coor-

dinate system’s origin to the plane.
• CL

m and CC
m are corresponding checker-

board corner points, m ∈ {1, . . . , 4}.

Finally, we are able to formulate the CSP
that employs the extracted features to con-
strain the rigid body transformation, which
consists of the rotation matrix RC

L and the
translation vector TC

L .



x φCL (◦) θCL (◦) ψC
L (◦) xT

C
L (cm) yT

C
L (cm) zT

C
L (cm)

x∗ 90.0 0.0 0.0 −27.0 15.0 −12.0
[x] [89.6, 90.3] [−0.4, 0.3] [−0.1, 0.3] [−28.8,−25.0] [13.1, 16.7] [−13.1,−11.0]

w([x]) 0.7 0.7 0.4 3.8 3.6 2.1

Table 1: Results from simulation. The rotation matrix RC
L is expressed using the three Euler

angles θCL , ψ
C
L and φCL . Besides, T

C
L = (xT

C
L yT

C
L zT

C
L )

ᵀ. We depict the true transformation
parameters x∗, the computed intervals [x] and the corresponding interval widths w([x]).

Variables:
RC

L ,T
C
L ,n

L,nC ,dL
i ,d

C
i ,

QL
ij ,Q

C
ik,P

L
l , d

C ,CL
m,C

C
m

Constraints:

1. RC
Ln

L = nC

2. RC
Ld

L
i = dC

i

3.
(
I− dC

i

(
dC
i

)ᵀ) (
RC

LQ
L
ij +TC

L −QC
ik

)
= 0

4. nC ·
(
RC

LP
L
l +TC

L

)
+ dC = 0

5. RC
LC

L
m +TC

L = CC
m

Domains:
[RC

L ], [T
C
L ], [n

L], [nC ], [dL
i ], [d

C
i ],

[QL
ij ], [Q

C
ik], [P

L
l ], [d

C ], [CL
m], [CC

m]

To solve the CSP, we build a forward-
backward contractor for all constraints. In
principle, one corresponding laser scan and
camera image suffices to compute the transfor-
mation. However, by combining the contrac-
tors built from different checkerboard poses,
the accuracy can be increased.

Results

Our results for simulated data show that we
are able to reliably enclose the true transfor-
mation parameters for different transforma-
tions. The results indicate that our method
can cope with outliers by employing a q-
relaxed intersection and performs accurately
for different error intervals. Table 1 depicts
exemplary results.

Moreover, we collected data using a typi-
cal laser scanner and camera setup to demon-
strate the applicability of our approach to real
data. The resulting intervals are consistent

with the parameters computed using the ap-
proach of Zhou et al. [3]. Unlike their method,
however, our approach allows a direct assess-
ment of the accuracy.
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